Status of ALOS-2 Mission Operation and Cal/Val Plan of ALOS-4

Takeo Tadono, Takeshi Motohka, Masato Ohki, and Shinichi Sobue

Japan Aerospace Exploration Agency (JAXA)

FRINGE 2023 University of Leeds, UK | 11 - 15 September 2023

💳 🖬 📲 💳 🚍 📲 📲 🔚 🗮 🧰 📲 📲 💳 📲 🔤 🔤 🖓 🚬 📲 👫 👫 🖬 🔤 🔤 🐏 → THE EUROPEAN SPACE AGENO

OUTLINES

- Overview of the JAXA's Earth Observation (EO) program and ALOS series missions
- Operation status and results of ALOS-2
- Development status of ALOS-4
- SAR international cooperation
- Application examples using L-band SAR
- Summary

·eesa

Successful H2A F47 Launch on 7th Sep., 2023

- Date & Time: 8:42 am, September 7, 2023 (JST)
- **Transports:** X-Ray Imaging and Spectroscopy Mission "XRISM" and Moon Explorer "SLIM"
- Instruments of XRISM: "Resolve" and "Xtend", Total Mass: 2.3 tons
- **SLIM:** Precision landing by lightweight spacecraft, Mass: 210 kg

https://youtu.be/5thA8iZv hmw?t=1982

Japanese L-band SAR Missions

ALOS-2 Overview

Mission objectives:

- Disaster monitoring (Earthquake, Volcano, Landslide, Flooding, ...)
- Environmental monitoring (Forest, Ice sheet, ...)
- Agriculture, natural resources, and ocean
- Technology development

Mission sensor	PALSAR-2 (Phased Array type L-band Synthetic Aperture Radar 2)
Launch	May 24, 2014 H-IIA launch vehicle FY24
Mass	2.1 tons
Lifetime	5 years (Target: 7 years)
Orbit	Sun-synchronous 628 km altitude 14 days revisit Orbit control: ≦ +/- 500 m
Local sun time	$12:00 \pm 15$ min (descending) $24:00 \pm 15$ min (ascending)
Mission data transmission	X-band: 800 Mbps (16 QAM), 200/400 Mbps (QPSK)

The compact infrared camera (CIRC) and SPAISE2 for detecting ships are carried as a technology demonstration payload.

·eesa

ALOS-2 PALSAR-2

Observation mode and specifications of ALOS-2 PALSAR-2.

Observation geometry of ALOS-2 PALSAR-2.

*

· eesa

14

60

-26

20

20

ALOS-2 Operation Status

The amount of remaining fuel The result of orbit control 1. 3. [kg] ¹³⁰ 500-m radius tube 600 Radial **Over 100kg remained** Reference 125 400 orbit 120 200 残推薬量, <mark>u</mark> Due to the increase of 115 solar activity 0 110 -200 105 100 ALOS-2 Bus system 2014/5 2015/5 2016/5 2017/5 CrossTrack **No anomalies** in regular check 2. ·600 -400 -200 The transition of S 200 400 600 PALSAR-2 system Success rate of over 99% 7200 ingi conciency ior Prediction Actual result InSAR processing 7000 Orbit control result (As of May 2023) **Appropriate power control** 6800 (Less decrement than prediction) PALSAR-2 system evaluation SAP発生電力(両翼)[W] 4. 6600 Three-month check-ups 6400 Thermal condition of components 6200 Phase shifter performance 6000 **Onboard RF characteristics** 5800 15/05/31 16/05/30 17/05/30 18/05/31 21/05/30 22/05/31 23/05/31 14/05/31 19/05/31 20/05/30

→ THE EUROPEAN SPACE AGENCY

CS

•

ALOS-2 Calibration Status

- On-board internal calibration is performed every 3 months.
- Product quality of major observation modes is evaluating regularly using SAR data over calibration sites.
- The standard product processing software was updated several times *e.g.*, in June 2018 (radiometric calibration), Nov. 2018 (correction of range offset), and April 2021 (updates the software for Spotlight and ScanSAR).
- > PALSAR-2 keeps good conditions and performances.

Calibration summary using PALSAR-2 acquired from July 2014 to Sep. 2022 (as of Oct. 2022).

Items		Results
Geometry (RMSE)	[Stripmap and Spotlight [ScanSAR]	.] 5.59 m (L1.1) / 6.73 m (L2.1) 60.77 m (L1.1) / 29.33 m (L2.1)
Radiometry	RCS accuracy (1σ)	0.522 dB (corner reflectors) 0.41 dB (Amazonian forests)
	VV-HH amplitude ratio	1.003 (σ=0.012)
Polarimetry	VV-HH phase difference	-0.362 deg (σ=1.404)
	Cross talk	[HV/HH] -42.970 dB (σ=6.609) [VH/VV] -42.889 dB (σ=5.590)

* https://www.eorc.jaxa.jp/ALOS/en/alos-2/a2_calval_e.htm

• (-) (-)

ALOS-2 & ALOS Open & Free Data Distribution

ALOS-4 Overview

THE EUROPEAN SPACE AGENCY → THE EUROPEAN SPACE AGENCY

ALOS-4 PALSAR-3

→ THE EUROPEAN SPACE AGENCY

12

ALOS-4 Proto-Flight Testing (PFT)

ELU:

■ ALOS-4/PALSAR-3 Sub-System Proto-Flight Tests (PFTs)

ALOS-4 Proto-Flight Testing (PFT)

→ THE EUROPEAN SPACE AGENCY

SPAISE3 had also already completed the PFTs individually.

©NEC

SAR mode	Spotlight (sliding)				Stripmap)			ScanSAR
Center frequency [MHz]	1	257.5				(or 12	1236.5 257.5/12	78.5)	
Bandwidth [MHz]		84		4	2	28	3	28+10	28
Resolution [m]	3 x 1 (Rg x Az)	3		e	3	10)	10	25 (1 look)
Swath width [km]	35	200	100	200	100	200	100	200	700 (4 scans)
Polarization	1, 2	1, 2	1, 2, 4	1, 2	1, 2, 4	1, 2	1, 2, 4	1, 2	1, 2
Incidence angle range	8-70	30-56	8-70	30-56	8-70	29-56	8-70	29-42	8-70
NESZ [dB] *	< -20	< -2	20	< -	24	< -2	28	< -24	< -20
Range S/A [dB] *	> 15	> 1	5	>	15	> 2	20	> 20	> 15
Azimuth S/A [dB] *	> 15	> 1	5	>	15	> 2	20	> 20	> 15
Pol. X-talk [dB] *					< -30				

* Specifications for one observation swath including 37 deg. incidence angle.

·eesa

💶 📲 🍁 🛛 🕂 THE EUROPEAN SPACE AGENCY

SAR mode	Spotlight (sliding)			Stripmap)			ScanSAR
Center frequency [MHz]	1	257.5			(or 12	1236.5 257.5/12	78.5)	
Bandwidth [MHz]		84	4	2	28	3	28+10	28
Resolution [m]	3 x 1 (Rg x Az)	2 Wider	6	6	1()	10	25 (1 look)
Swath width [km]	35	200 100	200	100	200	100	200	700 (4 scans)
Polarization	1, 2 🥌	Add dual-pol	1, 2	1, 2, 4	1, 2	1, 2, 4	1, 2	1, 2
Incidence angle range	8-70	30-56 8-70	30-56	8-70	29-56	8-70	29-42	8-70
NESZ [dB] *	< -20	< -20	< -	-24	< -2	28	< -24	< -20
Range S/A [dB] *	> 15	> 15	>	15	> 2	20	> 20	> 15
Azimuth S/A [dB] *	> 15	> 15	>	15	> 2	20	> 20	> 15
Pol. X-talk [dB] *				< -30				

* Specifications for one observation swath including 37 deg. incidence angle.

➡ THE EUROPEAN SPACE AGENCY

· e esa

SAR mode	Spotlight (sliding)				Stripmap	D		Ac	ld split-band
Center frequency [MHz]	1	257.5				(or 12	1236.5 257.5/12	78.5)	correction
Bandwidth [MHz]		84		4	2	28	3	28+10	28
Resolution [m]	Wider	3	5	6	6	10)	10	25 (1 look)
Swath width [km]	dd full-pol	200	100	200	100	200	100	200	700 (4 scans)
Polarization	1, 2	1, 2	1, 2, 4	1, 2	1, 24	1, 2	1, 2, 4	1, 2	1, 2
Incidence angle range	8-70	30-56	8-70	30-56	8-70	29-56	8-70	29-42	8-70
NESZ [dB] *	< -20	< -2	20	< -	-24	< -2	28	< -24	< -20
Range S/A [dB] *	> 15	> 1	15	>	15	> 2	20	> 20	> 15
Azimuth S/A [dB] *	> 15	> 1	15	>	15	> 2	20	> 20	> 15
Pol. X-talk [dB] *					< -30				

* Specifications for one observation swath including 37 deg. incidence angle.

SAR mode	Spotlight (sliding)				Stripmap)			ScanSAR
Center frequency [MHz]	1	257.5				(or 12	1236.5 Delete	14 MHz	
Bandwidth [MHz]		84		4	2	28	3	28+10	28
Resolution [m]	3 x 1 (Rg x Az)	3		e	3	10)	Wider	25 (1 look)
Swath width [km]	35	200	100	200	100	200	100	200	700 (4 scans)
Polarization	1, 2	1, 2	1, 2, 4	1, 2	1, 2, 4	1, 2	1, 2, 4	1, 2	1, 2
Incidence angle range	8-70	30-56	8-70	30-56	8-70	29-56	8-70	29-42	8-70
NESZ [dB] *	< -20	< -2	20	< -	24	< -2	28	< -24	< -20
Range S/A [dB] *	> 15	> 1	15	>	15	> 2	20	> 20	> 15
Azimuth S/A [dB] *	> 15	> 1	15	>	15	> 2	20	> 20	> 15
Pol. X-talk [dB] *					< -30				

* Specifications for one observation swath including 37 deg. incidence angle.

18

· eesa

InSAR capability between PALSAR-2 and PALSAR-3

	InSAP pair	PALSA	R-3	PAI	_SAR-2
	III SAN Pali	Stripmap100/200 km	ScanSAR 700 km	Stripmap 50/70 km	ScanSAR 350/490 km
	Stripmap 100/200 km	0	0	0	0
FALSAR-3	ScanSAR 700 km	0	0	0	×

 \checkmark ALOS-4 reference orbit is the same as ALOS-2

Controlling accuracy is within +/- 500 m (= small baseline)

19

·eesa

ALOS-4 Initial Operation Plan

- Focus on the observation modes/beams that will be used by most of the users (SM 3 and 10 m, WD, Spotlight)
 Calibration and conversibility about the ALOS 2
- Calibration and compatibility check with ALOS-2
 ✓ Radiometry & PolCal: Amazon and African rain forests,
 - ✓ Geometry & PolCal: CRs and ARCs including Ionospheric correction with TEC model, and
 - ✓ Image quality, InSAR (ALOS-4/ALOS-4 pairs, ALOS-2/ALOS-4 pairs), and other high-level products.

SAR International Cooperation

Apps. 1: L-SARs Annual Global Mosaic and ENF

Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest/Non-Forest map

ALOS Home > about PALSAR-2/PALSAR Global Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map > Global PALSAR-2/PALSA

Global PALSAR-2/PALSAR/JERS-1 Mosaic and Forest / Non-forest Map

* These map uses Javascript. Please enable JavaScript on your browser.

25m resolution product

Globa

• JERS-1 SAR Mosaic:

>> 1996

	2007	>>	2008	>>	2009	>>	2010	>>	2015
·>	2016	>>	2017	>>	2018	>>	2019	>>	2020

· JERS-1 SAR Mosaic:

>> 1993 >> 1994 >> 1995 >> 1996 >> 1997 >> 1998

Low resolution product

PALSAR-2/PALSAR

100m resolution product (mosaic and FNF map):

* https://www.eorc.jaxa.jp/ALOS/a/en/dataset/fnf_e.htm

2009 PALSAR 25m Mosaic

2009 PALSAR Forest/Non-Forest

(c) JAXA

Annual Global 25 m Resolution Mosaics & FNF Maps:

- PALSAR-2: 2015 2022 (Plan for reprocessing before 2018)
- PALSAR: 2007 2010
- JERS-1: 1996
 - + Low resolution 100 m mosaics
- Reprocessing Forest/Non-Forest classifications (FNF Map)

22

Forest Above Ground Biomass Ver. 4 by ESA Climate Change Initiative (CCI)

✓ Based on an agreement with the European Space Agency (ESA), the global forest biomass map Ver. 4 was created and released.

✓ The dataset covers 2010 (utilizing ALOS/PALSAR) and 2017 to 2020 (utilizing ALOS-2/PALSAR-2) for five annual periods with a spatial resolution of 100 meters.

Apps. 2: Sea Surface Wind (SSW)

·eesa

- The Sea Surface Wind (SSW) estimation under typhoon / tropical cyclone is essential to improve the forecasting.
- The emergency observations conducted several times in 2020.
- SFMR, the Airborne Passive Microwave Radiometer observations were used to develop model function collaboration with MRI.

2020/07/26 PALSAR-2 HV 9:40:59 ERA5

Updates of the model function (GMF). DORIAN(2019/9/5), DOUGLAS(2020/7/26) Estimated SSW by PALSAR-2/HV for DOUGLAS. Overlaid SFMR SSW

Apps. 3: Flooding Area Estimation

- A heavy rain caused by BAIU front since July 3rd, 2020.
- It caused river flooding and landslides in Kumamoto Pref. and surrounding regions.
- ALOS-2 conducted emergency observations on July 4-6th, 2020, and derived flooding areas.

· eesa

SUMMARY

JAXA EO program and ALOS series missions

- ✓ Unfortunate failure of ALOS-3 high-resolution optical mission and H3 TF1
- ✓ Launch of the H2A F47 was successfully

Operation status and results of ALOS-2

✓ Good performance in 9 years operation

Development status of ALOS-4

- ✓ Ready to launch and is waiting the H3 F3?
- SAR international cooperation
- Application examples using L-band SAR
 - ✓ Collaboration with international agencies and private sectors is expanded.

💳 🔜 📲 🚍 💳 🛶 📲 🚟 🚍 📲 📲 🚍 🛶 🚳 🛌 📲 🗮 🚍 🚥 🚳

SUMMARY

Thanks for attentions.

FP backscatter ALOS-2 © JAXA