

Characteristics of L- and C- Band A-DInSAR datasets in the Saar Mining District, Germany

Kalia¹, A. C., Spreckels², V., Lege¹, T.

¹Remote Sensing Section, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany

²RAG K-SG -Post Mining -Geodata -Remote Sensing, RAG Aktiengesellschaft, Essen, Germany

> Bundesanstalt für Geowissenschaften und Rohstoffe

www.bgr.bund.de

Motivation: Copernicus ROSE-L Pre-Launch: Geo-Hazard pilot site exploring synergies of C- and L-Band

Saar Mining district:

- Abandoned Mining site in higher latitudes
- Urban subsidence and uplift
- Cross border phenomena Germany/France
- Patches of forested area, farmland, pastures, urban area
- Opencast mines, tailing piles
- Several subsiding and uplifting areas
- Extensive data of subsurface geology and mining activity
- Existing C-Band Ground-Motion-Services
- Extensive terrestrial monitoring incl. levelling
- > Multisensor stations (MSST) combining GNSS, levelling and corner reflectors (CR)

Activity	Location	Time	Deformation
Active minning	French/German border	Until 2005	Subsidence
Flooding of abandoned mine sites	French/German border	After 2005	Uplift
Active mining	Germany	Until 2012	Subsidence
Flooding of abandoned mine sites – 1 st Phase	Germany	After 2012	Small uplift/stable
Flooding of abandoned mine sites – 2 nd Phase	Germany	Start foreseen ~2025	Uplift (~20cm expected)

Station SUES

Area of Interest and datasets

Station ANNA

GNSS Stations operating since 2021

Station LAUT

ALOS-2 Descending Track 097

ALOS-2 Ascending Track 199

🔨 Msst

Permanent GNSS measurements on MSST: daily mean; July 2020 – September 2023

Area of Interest and ALOS-2 datasets

MSST
ALOS-2 Descending Track 097

ALOS-2 Ascending Track 199

Observation time span: > 2 years

Observation mode: Stripmap Spatial resolution: 3 x 3m

Sentinel-1 dataset

Sentinel-1 Descending Track 139

Observation time span: > 6 years

Observation mode: Interferometric wide swath Spatial resolution: 20 x 5m (Az x Rg)

Sentinel-1 PSI based on data from GMS Germany

LOS displacement [mm]

S-1 Persistent Scatterer 2015-2021

S-1 Persistent Scatterer 2015-2021

Sentinel-1 PSI vs. GNSS displacement time series

The S-1 PSI time series has several outliers

٠

• The GNSS time series shows a small negative trend in 2021

ALOS-2 interferometric coherence at MSST

Station LAUT

ALOS-2 interferometric coherence 18.4.2021-11.6.2023

0

$$\gamma_{\rm CR_LAUT} = 0.97$$

Sentinel-1 vs. ALOS-2 PS density - preliminary

S-1 Persistent Scatterer (200 PS/km²)

ALOS Persistent Scatterer (2251 PS/km²)

• Persistent Scatterer

Background: CORINE Landcover 2018

Sentinel-1 vs. ALOS-2 PSI: Schneeweiderhof, Landfill

BGR Sentinel-1 PSI 2015-2021 ALOS-2 PSI 2021-2023 Mean velocity in LOS 200 m Coobasta-DE / NemiCookif, Mason Microsoft ≤-2 [cm/a]

≥+2

Sentinel-1 vs. ALOS-2 PSI: Rammelsbach, Basalt mining

BGR ALOS-2 PSI 2021-2023 Mean velocity in LOS

[cm/a]

≤-2

≥+2

Sentinel-1 vs. ALOS-2 PSI: Rammelsbach, Basalt mining

ALOS-2 PSI 2021-2023

BGR

≥+2

Conclusion

MSST Station LAUT is highly coherent in the 2 year ALOS-2 interferogram

Comparison of S-1 PSI displacement time series vs. GNSS at MSST shows similar long-term positive trend

Observations w.r.t. to the complementary characteristics of C- and L- band PSI:

- higher spatial resolution of ALOS-2 L-band data
- higher spatial PS density of ALOS-2 L-band data
- Higher temporal resolution of Sentinel-1 C-band data

Conclusion

First tests regarding the characteristics of L-band and C-band PSI in the AOI

- \rightarrow Dense and long L-band time series are required
 - \rightarrow to perform baseline monitoring of small displacements until 2025
 - \rightarrow to monitor expected strong uplift: start 2025

Thank you for your attention!

