

harmony TO RESOLVE STRESS IN THE EARTH SYSTEM

ESA's dynamic surfaces mission

Björn Rommen, Paco Lopez-Dekker, Pedro Jurado, Erik De Witte, Florence Hélière

FRINGE 2023, Leeds, 11-15 September 2023

Ser States

Harmony within ESA's EO missions landscape

→ THE EUROPEAN SPACE AGENCY

Harmony in a nutshell

Harmony is ESA's Earth Explorer 10 mission, comprised of two companion satellites in a loose convoy with Sentinel-1D (along-track separation ~350 km) Its payload suite consists of a passive SAR and a multi-view TIR instrument

Harmony – a multi-domain "Earth System" mission

Upper oceans and oceanatmosphere interactions

Land ice and sea ice

Tectonic strain and volcanic processes

Bringing Harmony to a dynamic world

Harmony will resolve (sub) kilometer scale motion vectors and topography changes associated to dynamic Earth System processes:

- heat, gas and momentum exchanges at the air-sea interface;
- the inner structure of ocean-atmosphere extremes;
- gradual and dynamic volume changes of global mountain and polar glaciers;
- instantaneous sea-ice motions to characterise sea-ice dynamics;
- 3-D deformation vectors associated to tectonic strain;
- topographic change at active volcanoes worldwide.

Contributing to data-driven Earth System Modeling

Earth System is highly non-linear \rightarrow complex couplings and feedbacks between processes at different scales.

₽

Unresolved $O(\lesssim 1 \text{km})$ processes and couplings in Earth System Models represent major contribution to model uncertainties.

Harmony is set to provide observations needed to develop/train/validate next generations of fully coupled Earth System Models. iterpret .

https://esamultimedia.esa.int/docs/EarthObservation/EE10 Harmony Report-for-Selection 21June2022.pdf

Harmony: sensing the cryosphere

Harmony provides topographic changes ...

→ THE EUROPEAN SPACE AGENCY

Harmony provides 3-D deformation vectors ...

- □ Current observation get only 2 components
- □ 3rd component (**vertical**) assuming surface parallel flow.

- □ Vertical component \rightarrow ablation or accumulation
 - ➔ First 3D structures of the ice sheets and glaciers
 - → Evaluation of surface mass balance models
 - Expression on the surface of subglacial processes.
 - ➔ Better understanding of the physical processes

→ THE EUROPEAN SPACE AGENCY

Harmony: Solid Earth

- Earthquakes and volcanoes shape the surface of the Earth.
- Understanding the processes involved requires measurements of deformation and elevation change.
- This is important to define global seismic hazard and forecast volcanic activity.

Solid Earth: E-W strain

Sentinel-1 produced a step change in our ability to measure strain.But: mostly sensitive to E-W motions

Strain rate for Anatolia from Sentinel-1 [Weiss et al, 2020]

Solid Earth: North-South Motion

Harmony will be sensitive to all components of deformation, including North-South

→ THE EUROPEAN SPACE AGENCY

Mission Phases Timeline

Y1	Y2	Y3 >	Y4	Y5
XII Phase		XII Phase		
Ice Volume change				Ice Volume change
Glacier dynamics				Glacier dynamics
Ocean topography (experimental)	Atmosphere-ocean	Ocean topography (experimental)		
	Upper ocean dynamics			
	Tec			
Vol. change (volcanoes)				Vol. change (volcanoes)
Iceberg volume	Sea-ice	instantaneous motion/deformation	on	Iceberg volume

.

-

Mission overview and observables

Line-of-sight diversity for high resolution

- Slow (DInSAR) and fast (Doppler) surface motion vectors.
- Directional roughness (→wind scatterometry)
- Improved directional surface wave spectra
- Sea Surface (skin) temperature
- Cloud-top motion vectors (TIR time-lapse) and height (TIR parallax)

Observation Concept: Along-Track Interferometry (ATI)

Harmony can observe instantaneous surface velocity vectors with Along-Track Interferometry (ATI).

Observation Concept: Repeat-Pass Interferometry

Harmony can observe slow movements in 3D with Repeat-Pass Interferometry.

Observation Concept: Repeat-Pass Interferometry

Harmony can observe slow movements in 3D with Repeat-Pass Interferometry.

Observation Concept: Thermal-Infrared

TIR-2

11.4-12.5 µm

The Harmony TIR instrument is a multi-channel, multi-view instrument that can observe ocean and clouds whilst flying in the twilight of the dawn-dusk orbit.

Mission overview and observables

Single-pass cross-track interferometer

- 3-D surface deformation (as in Stereo)
- Surface elevation time-series
 - Glaciers, permafrost, icebergs
 - Volcanoes

Observation Concept: Across-Track Interferometry

Harmony can observe topography changes with Single-Pass Across-Track Interferometry (XTI).

→ THE EUROPEAN SPACE AGENCY

Science primary goals overview

ld	What	Techniques		
H-01	Air-sea interactions	High-resolution scatterometry, - ATI-supported	ΓIR,	
H-O2	Air-oceans extremes	High-resolution scatterometry, ATI-supported, TIR-supported		
H-O3	Upper oceans	High-resolution scatterometry, ATI (Doppler), TIR		
H-C1	Glacier mass balance	XTI		* * *
H-C2	Glacier dynamics	XTI + DInSAR	+	
H-G1	Tectonic strain	Multi-directional DInSAR		

Harmony development schedule key dates

+

*

Mission Architecture Overview

💻 📰 📰 🧮 📫 📲 🕂 📲 🔚 📰 📰 📲 📲 📲 🔤 📷 🚺 🐂 📲 🔜 📾 🖬 🗮 🔤 🗰 🕍 🔸 The European space Agency

Summary

- Data driven ocean-atmosphere couplings and statistical. characterization of vertical fluxes in ESM 2.0.
- Understanding of air-sea interactions within extremes.
- Sea-ice dynamics.
- Global strain maps.
- Understand cycles of topographic change at volcanoes.
- Global and temporally consistent map of ice volume change (loss).
- Improved understanding of glacier dynamics.

Key (driving) science requirements

Key (driving) science requirements

