

The future Copernicus SAR mission constellation ROSE-L and Sentinel-1 NG

Malcolm Davidson, Julia Kubanek, Lorenzo Iannini, Ramon Torres, Gianluigi Di Cosimo European Space Agency (ESA) - ESTEC

12/09/2023

ESA UNCLASSIFIED – For ESA Official Use Only

Copernicus SAR Context

Copernicus Timeline – Current and Future SAR Missions 📀esa

Sentinel-1 NG Objectives and Driving Requirements

OBJECTIVES

- <u>Ensure continuity</u> and expansion of services and applications relying on Sentinel-1
- * *Enhance* existing services and applications
- *Enable* new application developments building on improved performance and observation gaps (e.g. resolution, revisit and others)

MISSION AND SYSTEM REQUIREMENTS

- ✤ Performance shall be equal or better than Sentinel-1 FG
- Revisit: 3 days Global, 0.5 days Arctic and sea ice
- Resolution $\leq 25 \text{ m}^2$
- ♦ NESZ \leq -26 dB
- Full continuity in Dual-Pol and Quad-Pol capability
- Use of a dedicated Mission Mode to cover the North Pole region
- ***** Same orbit of S1FG / ROSE-L in constellation of two satellites

💳 📕 🚼 🧮 🚍 📕 🗮 🗮 🔲 🗮 💳 👫 🚍 🚟 ன 🖗 🖂 🚺 🧏 💳 🖛 ன 🖉

ADS GmbH

TAS Italia

Sentinel-1NG and Copernicus Services

Sentinel-1 NG Requirements

Performance Requirements	Sentinel-1 NG	Sentinel-1	
Latitude coverage	-80 to +90 deg	North-pole gap	
Revisit	Goal: 3 days Global Goal: 0.5 days Arctic and Sea Ice	Up to 12 days	
Latency	10 min European Waters 120 min Global	10 min RT, 1 h NRT emergency, > 3 h Global	
Repeat pass InSAR	6 / 12 days (S1 & ROSE-L orbit)	6 / 12 days	
Incidence angle access	Better than 20 – 45 deg	20 – 45 deg	
Swath width	Larger than 400 km	250 IW – 400 EW	
Resolution	25 m ²	~100m2 IW - ~800m2 EW	
NESZ	-26 dB	-22 dB	
Polarization capability	SP, DP and QP	SP and DP	
Duty cycle	43% (~43 min/orbit) with 53min any orbit	25min/orbit	

Other Mission Requirements

Enhanced operations through the **potential integration of additional satellites**Automatic Identification System (AIS) payload to augment maritime services
Over open oceans the mission shall support the generation of wave mode products

S1NG – benefits of higher resolution

S1 IWS (4 looks)

Lower NESZ (-26 dB)

will further enhance mapping and characterization of weak scatterers (benefits in soil moisture, oil spills, sea ice mapping, etc...)

E-SAR data for ESA AgriSAR campaign with Sentinel-1 simulation in stripmap and IWS mode. Color coding is RGB: HV-HH-HH. Stripmap resolution is the same as S1-NG, although with higher NESZ (DLR)

Sentinel-1NG Programme Aspects

- Phase 0 (Mission Identification) carried out in 2019-2020
- Phase A/B1 in two years 2021-2023 two parallel studies with European industry
 - PRR carried out in February/March 2022 for both consortia
 - ISRR concluded in Q2 2023 for both consortia
- ITT for Development Phase (Phase B2/C/D/E1) to be issued by November 2023
- Expected launch > 2032

Phase A Candidate Concepts

Two contracts kicked-off in May 2021

ADS GmbH

TAS Italia

- Constraints:
 - Launcher (VEGA-C)
 - Technology readiness
- Concepts with both Planar Array Antennas and Reflector Antennas were studied
 - Planar array antennas were selected by both consortia at the end of Phase A (PRR)
- The instrument is based on SCORE (DBF in elevation) and MAPS (DBF on-ground in azimuth)
- Both ScanSAR and Stripmap modes are proposed
- AIS instrument providing continuity with the S1C & S1D payloads

💳 🔜 🚼 💳 💳 🚛 📕 🏥 💳 🔛 📲 🚟 👫 💳 🛶 🚳 🛏 📕 👫 🛨 🖬 🖅 🚟 🔛 🙀 🔹 the European space agency

Sentinel-1NG use of SCORE and MAPS

Scan on Receive in Elevation (SCORE)

SCORE combines the signals of the various elevation channels in a way that the direction of maximum receive gain follows the reflection of the radar pulse on the ground.

- Wide swaths (wide angular range) up to SM with 229 km
- Good RgDTAR suppression performance for polar incidence angles of 59° (dual pol) and for >45° (quad pol) mode,

Multiple Apertures in Azimuth (MAPS)

The phased array acquires multiple directions simultaneously. On-ground processing allows to shape and steer the virtual antenna beams individually.

- Large instantaneous Doppler bandwidth with moderate scalloping for ScanSAR modes IW and EW
- Low PRF operation with good AzDTAR performance for wide SM-DP and SM-QP

ROSE-L Mission in Brief

GENERAL

- Constellation of 2 satellites (PFM & FM2) + options under study
- Consortium led by Thales Alenia Space Italy (TAS-I), involving 29 companies from 15 countries
- Service continuity with Sentinel-1
 FG and NG

COVERAGE

- Coverage of Global Land (excl. Antarctica) and Arctic
- Revisit with 2 satellites :
 - 6 days Global Land
 - 3 days Europe
 - 1 day Arctic
- Repeat cycle of 6 days over Global Land (2 satellites)

PROGRAMMATICS

- Currently at the beginning of Phase C
- Science Plan activities start in 2023
- Launch of PFM expected in 2028
- FM2 delivery expected in 2030

IMAGING

- L-Band 85 MHz ITU allocated band (1.215-1.300 GHz)
- Dual-Pol and Quad-Pol modes
- ✤ Wave mode capability
- Resolution < 50 m2 (RIWS mode)</p>
- ✤ NESZ < -28 dB</p>
- ✤ DTAR < -23 dB</p>
- ✤ Swath width > 250 km

SYSTEM

- Synergic acquisitions with Sentinel-1: co-located swaths and support to convoy configuration
- Low latency
 - 10 min Europe coastal waters
 - 200 min Global
- Companion friendliness for Single-Pass Interferometry

ROSE-L Objectives and Services

💻 🔜 📕 🕂 💶 🚍 📲 📕 🚝 🔲 📲 📲 🚝 🚝 த 🧖 🖉 🚬 📕 💥 🕂 🖬 🚍 🐷 🐷 🔤 🐓 🔹 Этне Еигоре

Geohazards Monitoring – Ground Motion

- Improved coverage and availability of motion information in vegetated and snow covered areas, compared to C-band, mainly due the capability of sensing the ground
- Enhanced robustness to phase unwrapping in fast deformation scenarios due to longer wavelengths

- 6 days repeat pass with two satellites
- 50 m2 Resolution for localized displacement
- ASC and DESC acquisitions for EW motion
- Low latency for rapid mapping after event

Post-disaster annual mean LoS deformation rate of Sunkoshi landslide measured by (a) ALOS-2 data during period I (2014-2017) and (b) Sentinel-1 data during period I (2017-2019, with 10 months overlap with period I). From Ao et al., 2020, Characterizing the evolution life cycle of the Sunkoshi landslide in Nepal with multi-source SAR data, Nature, Scientific Reports

ESA BorealScat experiment. Median temporal coherence over temporal baselines of multiples of one day. From Monteith and Ulander, TGRS, 2021

👝 🚍 📕 👬 🚍 📻 🚛 🚺 🚝 💶 🚺 🛄 🚍 👬 🚍 🔤 🚺 📜 😹 👫 🕂 🖬 🔛 🖉

Biomass and LULC Mapping

 New timely information on above ground biomass (AGB) and biomes structure/type. L-band is suitable to forests

with AGB up to 100-150 Mg/ha, where it can sense the whole structure

- Enhanced continuity on deforestation monitoring, including tropical forests. L-band is sensitive to changes/losses (e.g. by logging)
- Improved Land Use / Land Cover mapping in combination with Sentinel-1, exploiting the complementary sensitivity.

REQUIREMENTS

- Revisit (6 days Global, 3 days Europe)
- High resolution
- Companion friendliness to support option for forest
 height retrieval

👝 💼 📕 📫 🚍 🔚 🚛 🚛 📕 📕 🚛 📲 🚍 🛶 🧖 🔤 🛶 👰 🚬 📕 💥 💶 💶 🚾 🚾 🙀 → The European Space Agency

Soil Moisture

- **High-resolution Soil Moisture** tracking in a broad range of crops and vegetated land, complementing Sentinel-1 SSM products that are mainly suitable for bare soils and low vegetation areas.
- Information of Soil Moisture up to ~5 **cm depth** that shall be combined with upper 1 cm layer SSM from Sentinel-1

REQUIREMENTS

- Revisit (6 days Global, 3 days Europe)
- High resolution
- Low noise level (NESZ, ambiguities)
- Integration (downscaling) with Scatterometers and L-band Radiometers for temporal revisit and accuracy

Results from ESA SARSense air- and space- borne campaign. Acquisitions over Selhausen (DE). (left) Change in backscatter observed in C- and L-band for irrigated and non-irrigated area (F11), but also range dependent. (Right) Scatter plots between soil moisture and backscattering signal from co- and cross-polarized channels of C- and L-band satellite data. From Mengen et al., 2021, Remote Sensing

-25

-30

-35

-5 -10

-20

-30¥

dB) -25

<u>p</u> -35 Sentinel-1

potato

Sea Ice Monitoring

- Daily high-resolution information on hazardous sea-ice and icebergs for navigation and weather/climate services
- Enhanced mapping of sea-ice type and concentration, adding to C-band the L-band sensitivity to large ice structures (e.g. fractures and ridges)
- **Improved mapping of sea-ice drift** by flying in a close formation with Sentinel-1

REQUIREMENTS

- Revisit (1 day Arctic, 3 days Europe, 6 days Global)
- Low noise level (NESZ, ambiguities)
- High-resolution and wide swath
- Simultaneous acquisitions with Sentinel-1 for sea ice mapping

Sentinel-1 Extra Wide Swath and ALOS-2 PALSAR-2 Wide Beam images acquired at HH- and HV polarization over Fram Strait, on Dec. 9, 2019. The PALSAR-2 images were aligned to the Sentinel images. By courtesy of Johannes Lohse, UiT. From Dierking et al., 2022, IGARSS

👝 🚍 📕 🚝 🔚 🔚 🔚 🚝 📕 📕 🔚 🔚 🚍 📲 🔤 🔤 🚺 📲 🐜 🚺 👘 🖓

Maritime and Marine Monitoring

- Added value in vessel detection for maritime surveillance due to reduced sensitivity of sea backscatter at lower wind
- Improved detection of icebergs thanks to a better sensitivity of L-band to large ice structures
- Added value in extreme events (e.g. tropical cyclones) as high winds do not saturate the signal

REQUIREMENTS

- Wave mode
- Revisit (1 day Arctic, 3 days Europe, 6 days Global)
- Low latency for European waters (< 10 minutes)
- Low noise level (NESZ and ambiguities)
- High-resolution, wide swath
- ATI capabilities (MAPS)

👝 🚍 📕 🚝 🚍 🔚 🏣 🔚 🔚 📥 📲 🚍 🛶 🚺 📕 🛶 🕮 🔤 🔤 🚱

ROSE-L SAR Imaging and Systematic Acquisitions

As current baseline the instrument provides *2 ScanSAR Wide Swath modes* and a **Wave Mode** over open ocean

ROSE-L SAR Modes	RIWS ROSE-L Interferometric Wide Swath	QWS Quad-pol interferometric Wide Swath	Wave Mode
Polarization	Dual-Pol (HH-HV or VV-VH)	Quad-Pol (HH-HV-VH-VV)	Single-Pol
Incidence angle access	29 – 46 deg Full overlap with S1 IWS swath at all latitudes	Fixed swath within 20 – 45 deg (e.g. 25 – 42.3 deg)	Variable
Swath	260 km	260 km	20 x 20 km
Resolution	50 m ²	100 m ²	50 m ²
NESZ	< -28 dB	< -28 dB	< -28 dB
DTAR	< -23 dB	< -23 dB	< -23 dB

ROSE-L Sizing Requirements:

- a) "Always on" over *Europe*, *Arctic*, *coastal Antarctica* and *global Tectonic areas* in dual or quad-pol SAR mode
- b) Full coverage of *remaining landmass* (not included in a)) within 12-day revisit time , i.e. 6-day revisit time for entire constellation in dual or quad-pol SAR mode
- c) Wave mode over **Open Ocean**

ROSE-L *continuous operations*

capability per sliding orbit time window:

- 35 min in *dual- pol SAR mode* or
- 20 min in *quad-pol SAR mode*, and
- for the remaining time in Wave Mode

ROSE-L Mission Design Highlights and Constellation

ROSE-L will augment Sentinel-1 by means of a synergic acquisition plan and mission design

Collocation with Sentinel-1

- Same orbit configuration of Sentinel-1.
- Phasing of the orbital plane adjusted to follow the same ground track of Sentinel-1
- RIWS mode guarantees full swath overlap with S1 IWS
- Mission design supports options for: 1) different orbit phasing for optimized revisit
 2) convoy with Sentinel-1 (up to a minimum 1min baseline)

Extensive Global coverage and consistent long-term archive

- Coverage of Global land (except for South pole). ~ 38 min/orbit duty cycle
- Consistent acquisitions through years for long-term coherent data stacks

Free, full and open data policy

Moving towards a System of Systems concept and enhanced information products

ROSE-L SAR Instrument – Main Characteristics

- Deployable planar active array antenna of 11m x 3.6m with 5 panels
- Antenna consists of **5 (az)** x **12 (el)** sub-arrays = (analog) **60 phase** centers
- Each phase center is fed by an individual dual-pol TRM of ~150W peak
- ⇒ Radiated **peak** power ~9kW
- Each sub-array consists of 2 x 12 radiating elements
- Digital beamforming (DBF): 12 channels in Elevation
 - 3 adjacent elevation channels combined (V&H) and then digitized
 - \Rightarrow resulting 4 digital channels (V&H) used to form "Scan-on-Receive" beams in real-time on board
 - 5 digital channels in azimuth "MAPS", all down-linked and then combined on-ground
- \Rightarrow Total of 20 (V) + 20 (H) digital channels

sub-array with 2x12 radiating elements

SAR echo is received by 5 sub-apertures. each digitized, stored and down-linked

Conclusions

- Sentinel-1 Next Generation at C-band to
 - <u>ensure continuity</u> and expansion of services and applications relying on Sentinel-1.
 - <u>enhance</u> existing services and applications
 - <u>enable</u> new application developments building on improved performance and observation gaps (e.g. resolution, revisit and others)
 - Sentinel-1 NG will bring new and enhanced capabilities
 - Higher resolution (25m² for S1NG)
 - Low NESZ (-26 dB for Sentinel-1 NG)
 - Wide swath (400km) and frequent revisit capability and greatly enhanced duty cycle
 - ROSE-L bring new and enhanced capabilities
 - to address information gaps and provide new information not yet available through current Sentinel missions
 - High resolution (50m² for ROSE-L RIWS)
 - Low NESZ e.g. -28 dB for ROSE-L
 - High duty cycle, wide swath & frequent revisit capability => Mapping machine
- Sentinel-1, ROSE-L and Sentinel-1NG are addressed as a system (not in isolation)