Sentinel-1 Product Performance

Muriel Pinheiro (ESA), Antonio Valentino (RHEA), Clément Albinet (ESA), Guillaume Hajduch (CLS), Pauline Vincent (CLS), Andrea Recchia (Aresys), Alessandro Cotrufo (Aresys), Kersten Schmidt (DLR), Christoph Gisinger (DLR) https://sar-mpc.eu/about/activities-and-team/

FRINGE 2023 University of Leeds, UK | 11 - 15 September 2023

→ THE EUROPEAN SPACE AGENCY

Highlights on instrument and data performance

□ Highlights on products and evolutions

□ Highlights on on-going activities

Highlights on instrument and data performance
 R-6
 Highlights on products and evolutions
 R-5, R-7, R-8
 Highlights on on-going activities

✤ R-1, R-26, R-46

□ Highlights on instrument and data performance

□ Highlights on products and evolutions

□ Highlights on on-going activities

· eesa

· eesa

📕 🔜 📕 📲 💶 🛶 🛛 🖉 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛻 🚳 🍉 🚺 👫 📲 🛨 📰 📾 🕮 🏜 🚺 🔸 🗰 the European space agency

Highlights on instrument and data performance

□ Highlights on products and evolutions

□ Highlights on on-going activities

Instrument Performance: Antenna Gain

11

Instrument Performance: noise

*

12

Instrument Performance: Burst Synchronization

14

L1: radiometric calibration and performance

Derived radiometric accurac	Derived	radiometric	accurac
-----------------------------	---------	-------------	---------

	S-1A	S-1B	
absolute radiometric accuracy (1σ)*	0.325 dB	0.323 dB	
* including Long term stability of the instrument $0.05 \text{ dB} (1\sigma)$ Dynamic range error $0.067 \text{ dB} (1\sigma)$ Reference target accuracy $0.20 \text{ dB} (1\sigma)$			

Radiometric accuracy continues to be within mission requirements and stable over time

· eesa

	S-1A		S-1B	
	μ [dB]	σ [dB]	μ [dB]	σ [dB]
IW1 VV	-0.13	0.23	-0.02	0.22
IW1 VH	-0.20	0.24	-0.20	0.29
IW1 VV&VH	-0.16	0.24	-0.09	0.26
IW2 VV	-0.11	0.17	-0.12	0.17
IW2 VH	-0.00	0.30	-0.25	0.25
IW2 VV&VH	-0.08	0.21	-0.15	0.20
IW3VV	-0.05	0.23	-0.02	0.20
IW3VH	0.08	0.30	-0.04	0.26
IW3 VV&VH	0.00	0.27	-0.03	0.23
IW 1-3 VV	-0.10	0.21	-0.06	0.21 0.28 0.240
IW 1-3 VH	-0.09	0.30	-0.17	

1

abs cal factor deviation [dB]

-0.5

-1

Jan/2018

→ THE EUROPEAN SPACE AGENCY

15

L1: radiometric calibration and performance

S-1A S-1B μ [dB] σ [dB] μ [dB] σ [dB] IW1VV -0.07 0.19 0.16 0.16 IW1VH -0.24 0.18 0.00 0.18 -0.14 IW1 VV&VH 0.20 0.10 0.19 IW2VV -0.07 0.16 0.00 0.20 IW2VH -0.08 0.26 0.26 -0.11 0.18 -0.02 0.22 IW2 VV&VH -0.07 IW3VV -0.04 0.21 0.00 0.20 IW3VH 0.00 0.23 -0.05 0.19 IW3 VV&VH 0.22 -0.02 -0.02 0.20 IW 1-3 VV -0.07 0.18 0.07 0.20 IW 1-3 VH -0.15 0.23 -0.04 0.21 **IW 1-3 VV&VH** -0.09 0.204 0.04 0.210

With EAP re-compensation

Derived radiometric accuracy

	S-1A	S-1B	More info: <u>Radiometric</u>
absolute			Re-Compensation of
radiometric	0.298 dB	0.302 dB	Sentinel-1 SAR Data
accuracy (10)			Products for Artificial
including	6 + h - :		Biases due to Antenna
Long term stability o	f the instrument	$0.05 \text{dB} (1\sigma)$	Pattorn Changes
Dynamic range error		0.067 dB (10)	<u>r allem Ghanges</u>
Reference target acc	uracy	0.20 dB (10)	

16

L1: radiometric calibration and performance

- (Up to 2021): Unexplained biases between S1A and S1B in HH, but not in VV,
 - hinting at problems with HH calibration
 - behaviour not consistent for IW and EW
- Changes in acquisition scenario to support radiometric calibration:
 - Alternating HH/VV over CSA transponders, in cooperation with CSA for transponder activation
 - Alternating HH/VV over Surat
 - Change in acquisition pattern over rain forest: alternating HH/VV and EW/IW and including overlap between modes with similar geometries
- Plan started to be implemented November 2022 and results are currently being evaluated

L1: Absolute Location Error (ALE)

Out-of-the-box (OOB) accuracy under 7m (3sigma)

→ THE EUROPEAN SPACE AGENCY

*

L1: Absolute Location Error (ALE)

Decimetre accuracy after considering environment and system corrections (including antenna failure)

→ THE EUROPEAN SPACE AGENCY

L1: ALE – recalibration of timing offsets

using different sites (AUX ITC)

Inter-beam offset under analysis

ALE bias closer to 0m

Offsets should enable S1A and S1B

Metsähovi (Oct. 2013): **1 CR** (1.5 m) – **D** Local ties (< 5 mm)

Wettzell (Jul. 2011, Oct. 2013): **1 CR** (1.5 m) – **A**, **1 CR** (1.5 m) – **D** Local ties (< 5 mm)

Yarragadee (Aug. 2018): **1 CR** (1.5 m) – **A**, 1 CR (1.5 m) – **D** Local ties (< 15 mm)

Surat Basin (Nov. 2014): **40 CR** (1.5 / 2.0 / 2.5 m) – **A** DGPS survey (< 3 cm)

→ THE EUROPEAN SPACE AGENCY

L1: ALE – recalibration of timing offsets

21

□ Highlights on instrument and data performance

□ Highlights on products and evolutions

□ Highlights on on-going activities

L1: RFI mitigation and monitoring

- RFI detection and new RFI annotations available since **November 04, 2021**.
- Test campaign in the ground segment for:
 - Statistical analysis
 - Tunning of processing parameters
 - Assessment o Time: Monday, 12:20pm 12:40pm
 - Improvement Of Interferometric Coherence Through RFI Mitigation In

Bo

- Assessment o Sentinel-1 Products including InSA Andrea Recchia et al, Aresys
- Operational filtering of RFI contamination in Sentinel-1 data was activated on March 23, **2022**, after extensive validation and tunning.

L1: RFI mitigation and monitoring

RFI residuals from quick-look inspection: estimated drop from 20% to about 1% of impacted slices

→ THE EUROPEAN SPACE AGENCY

- Geometry accuracy shown previously is accessible by putting in place several corrections.
- These corrections are easily obtained and applied using the new **S1 ETAD product.**
- Since April 2023, processor has been deployed and it is running in the ground segment.
- Cal/Val approach currently being consolidated, and the product quality is being monitored.
- Dissemination should start at the end of the year.

→ THE EUROPEAN SPACE AGENCY

•

- Geometry accuracy shown previously is accessible by putting in place several corrections.
- These corrections are easily obtained and applied using the new **S1 ETAD product**.

 Image: Constraint of the second se

Ionosphere Solid Earth Solid Earth **Bistatic Effects Doppler Shifts** Tides Range **Tides Azimuth** Range Range Azimuth Sentinel-1 Document Library Sentinel-1 Annual Performance Sentinel-1 Extended Timing Report 2022 Annotation (ETAD) - ATBD This ATBD describes the methods implemented i The purpose of this document is to provide the the Sentinel-1 Extended Timing Annotation status of the Sentinel-1 instrument and product Processor (SETAP) to generate the Extended performance for 2022. Timing Annotation Dataset (ETAD) product for correcting the range ... READ MORE ->

ntinel-1 Extended Timing

notation (ETAD) - Product finition Document

ocument at hand defines the content and of the Extended Timing Annotation FM-rate Mismatch

Azimuth

→ THE EUROPEAN SPACE AGENCY

- Since April 2023, proce and it is running in the (*Time: Tuesday, 4:30pm-7:00pm, Poster* ESA's Extended Timing Annotation Dataset (ETAD) for Sentinel-1 – Product Overview and Progress *Christoph Gisinger et al, DLR*
- Cal/Val approach curreining consolidated, and the product quality is being monitored.
- Dissemination should start at the end of the year.

R-5, R-7, R-8 ETAD, provision of data for co-registration support, e.g., geodetic layers

ETAD validation: analysis over corner reflectors

 Test pilot was carried independent validatio 	out in 2022 with expert users forn (focus on speckle tracking andWinter 2023	
interferometry)	Time: Monday, 4:10pm - 4:30pm, Location: Auditorium I	
 Continuation activities 	Interferometric Phase Corrections Based On ESA's Extended Timing	
 New layers 	Victor Diego Navarro Sanchez et al, DLR	
 Ocean loadi 	na tracking (235)	(TBC)
 Pole tides 	Time: Monday, 4:30pm - 4:50pm, Location: Auditorium I Impact of ETAD-like corrections on OPERA Coregistered Single Look	New layers
 Ionospheric 	Complex products from Sentinel-1 data	(including
InSAR	Heresh Fattani et al, JPL	support to
 Support to h 	Time: Monday, 4:50pm - 5:10pm, Location: Auditorium I	InSAR, EGMS)
 New troposp 	Exploiting ETAD Data For Estimating And Filtering Out The Atmospheric Phase Screen Component From Medium/High Resolution DInSAR	;
 NRT aspects 	Products	
 Starting of prepa 	Ivana Zinno et al, CNR-IREA ration for future missions (L-band)	

· eesa

💳 📰 🛃 🚍 💳 🕂 💵 🔚 🔚 📰 👭 🔚 🚍 📲 🚍 🛶 🔕 🍉 💵 👯 🚼 🖬 📟 📾 🌬 🕪 🔶 The European space agency

User support: data processed without orbit

- From March to December 2021, due to an interface anomaly, all L1 has been processed without POD orbits (see here)
- Recently, the MPC has been contacted to review the analysis, given user evidence from speckle tracking timeseries
- MPC performed extensive complementary analysis, including analysis of radiometry and FM rate and interferometric assessment between data processed with and without orbits
- Analysis supports previous conclusion of no considerable degradation in the data

THE EUROPEAN SPACE AGENCY

•

□ Highlights on instrument and data performance

□ Highlights on products and evolutions

□ Highlights on on-going activities

31

Activities related to Fringe 21 recommendations

33

Thank you! Muriel.Pinheiro@esa.int