→ RADAR VISION FOR COPERNICUS

RADAR VISION FOR COPERNICUS

SENTINEL-1 Mission Status

Nuno Miranda, ESA

Sentinel-1 Mission Manager

FRINGE 2023

ESA UNCLASSIFIED – For ESA Official Use Only

Sentinel-1 Team: Ramón Torres, Dirk Geudtner, Olivire Colin, Muriel Pinheiro, Pierre Potin,

Jean-Baptiste Gratadour, Alistair O'Connell, David Bibby, Ignacio Navas-Traver, Mario Cossu

ESA Earth Observation Programme @ FRINGE23

Tomorrow:

 9:00am - 9:20am Overview and preparation status of ESA's Earth Explorer 7 Biomass mission

SAR C-band data record

→ THE EUROPEAN SPACE AGENCY

Sentinel-1 First Generation timeline

Sentinel-1 Mission in a Nutshell

MISSION PROFILE

- Constellation of two identical SAR C-band satellites: (A & B → C units)
- Near-Polar, sun-synchronous (dawndusk) orbit at 698 km altitude
- 7.25 years lifetime (consumables for 12 years)
- 12-day repeat cycle (each satellite), 6 days for the constellation

OPERATIONS

- Systematic SAR data acquisition using a predefined observation scenario
- Instrument duty cycle of max. 25 min/orbit in High Bit Rate modes (30 min outside eclipse) and 75 min/orbit in Low Bit Rate mode (Wave)

PROGRAMMATICS

- Sentinel-1C launch 2024
- Sentinel-1D currently in storage to be launched as soon as possible S-1C

Free and Open

PAYLOAD

✤ C-Band SAR

- Centre frequency: 5.405 GHz
- Polarizations: HH, VV, HH/HV, VV/VH
- Incidence angle: 20° 45°
- Radiometric accuracy: 1 dB (3σ)
- Radiometric stability: 0.55 dB (3σ), 0.45 (3σ) for S-1 C/D
- NESZ: -22 dB
- DTAR: -22 dB
- AIS Instrument marine surveillance (for S-1 C and D)

IMAGING MODES

- Strip Map Mode: 80 km swath and 5x5 m (range x azimuth) resolution
- Interferometric Wide-Swath Mode: 250 km swath, 5x20 m resolution
- Extra-Wide-Swath Mode: 400 km swath and 20x40 m resolution
- Wave Mode: 5x5 m resolution, leap-frog sampled images of 20x20 km

→ THE EUROPEAN SPACE AGENCY

Sentinel-1 Imaging Modes

	TOPS	SM		TOPS	
arameter	Interferometric Wide- swath mode (IW)	Wave mode (WV)	Strip Map mode (SM)	Extra Wide- swath mode (EW)	
olarisation	Dual (HH+HV, VV+VH)	Single (HH, VV)	Dual (HH+HV, VV+VH)	Dual (HH+HV, VV+VH)	
access incidence ngles)	31°-46°	23°–37° (mid incidence angle)	20°-47°	20°-47°	
zimuth esolution	<20m	<5m	<5m	<40m	
Ground range esolution	<5m	<5m	<5m	<20m	
arimuth and	Single	Single	Single	Single	
wath	>250 km	Vignette 20×20km	>80km	>410km	
/laximum NESZ	-22dB	-22dB	-22dB	-22dB	
adiometric tability	0.5 dB (3σ)	0.5dB (3σ)	0.5 dB (3σ)	0.5 dB (3σ)	
adiometric ccuracy	1 dB (3σ)	1 dB (3σ)	1 dB (3σ)	1 dB (3σ)	
hase error	5°	5°	5°	5°	

Sentinel-1 observation plan

The largest provider of SAR data worldwide

S-1A and B

Observation plan details available at:

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/observation-scenario/

→ THE EUROPEAN SPACE AGENCY

World largest SAR provider

- Current S-1A observation scenario (compared to 2016) is tuned to preserve time series worldwide
- Data sensing over Arctic is for most of it covered by RCM (RCM/Sentinel Contingency agreement)

Sentinel-1 Duty Cycle optimisation

SAR duty cycle has been increased as result of operations optimisation:

- 2014-2015 | Initial ramp-up
- **2017** | inclusion of EDRS in routine ops
- **2018** | Relaxation of 25 min constraint outside eclipse
- 2021 | sligth increase of S-1A DC to cope with S-1B loss

• S-1A is used at is maximum capacity \rightarrow no new substantial acquisition can be accommodated

• **SAR DUTY CYCLE** | Sentinel-1 can acquire up to 30min (per unit) of HBR (IW& EW) within an 100min rolling window (outside eclipse season)

W Sensing Increase

→ THE EUROPEAN SPACE AGENCY

*

Rapid response to crisis

This systematic strategy makes Sentinel-1 prompt in providing archive and fresh information to support extreme event

SLC Processing mask

IW SLC Processing mask

EW SLC Processing mask

EW SLC 2022-12-31 21:12:45.928000 2022-12-31 21:12:45.928000

Data access dashboard

Copernicus Data Space Ecosystem deployment schedule

What can you expect?

The Copernicus Data Space Ecosystem will be continuously upgraded over the upcoming months. The majority of the services will be available by July 2023.

> April 2023 • Catalogue API: STAC, S3 • Processing API: Sentinel Hub and OGC for supported collections • Traceability API • On-demand production API

January 2023

- Copernicus Data Space Ecosystem initial service
- Start of user registration
- Sentinel data offering
- Browser
- Catalogue APIs: OData and OpenSearch

September 2023 Closure of legacy Data access

01 July 2023

Hub APIs, OpenEO

Jupyter Lab

Marketplace

Full archive of Sentinel missions
Complementary open datasets

Processing API: extended Sentinel

November 2023

Sentinel engineering and auxiliary data

Streamlined data access of federated

Copernicus Contributing Missions

Access to commercial data

data sets

ALL L1 Data back online since launch

- New APIs for discovery & access • STAC & S3
- Capacity for ondemand processing
- Additional datasets
- Native Cloud Services

https://documentation.dataspace.copernicus.eu/#/Roadmap

Sentinel-1B Disposal approach

Sentine-1B Disposal approach

Copernicus Sentinel-1C/-1D Status

Sentinel-1C/-1D to continue and augment Sentinel-1A/-1B services

- fully compatible w.r.t. SAR mode characteristics, observation geometry, image resolution and burst synchronization (InSAR)
- Sentinel-1C/D built on S-1A/-1B design with *Evolution* and *Improvements*

Sentinel-1 A

Sentinel-

Image courtesy: P. Vachon, DRDC

- S-1C/D design compatible with Space Debris Casualty Ratio less than 10⁻⁴
- GNSS receiver compatibility with Galileo
- Interleaved Calibration Noise Pulses for thermal noise correction
- Improved SAR Instrument Performance (radiometric accuracy)
- Satellite Manoeuvring (thruster performance)
- SMU Processing Capability (LEON3 processor)
- Vega-C launcher qualification
- Sentinel-1C ready for launch
- Sentinel-1D went into storage in Oct. 2021

💳 📰 📲 🚍 💳 🛶 📲 🔚 📰 📰 📲 🚍 📲 🚍 🛶 👰 🛌 📲 🚼 🚍 🖬 ன 🔤 🛶 🛊 → The European space Agency

Improvements of Internal Calibration System

BETTER RADIOMETRIC PERFORMANCE | simplified

internal calibration approach allowing to:

- Achieve a –*slightly* better radiometric stability 0.45 dB (3σ) (compared to 0.55 dB (3σ) for S-1A&B)
- Introduce proper noise pulses all along the data-take for tracking the Earth brightness emissivity:
 - → Better denoising → better radiometric accuracy over low signal values (cross-pol data)
 - → Much reduced thermal noise patterm

S-1 Earth brightness emissivity from noise pulses

💳 💶 📲 🚍 💳 📥 📲 🔚 📰 📰 📰 📲 🔚 📰 🛏 🚳 🖿 📲 🖽 🖬 🗺 🚍 🥵 1 🎢 🕨 S-1C/Ď^{the European Spa}

Sentinel-1C/D AIS Instrument

AIS Instrument for augmentation of SAR maritime services

- Provides ship identification data simultaneously with SAR images
- AIS footprint matches IWS for maximising SNR and minimising message collisions
- AIS observation scenario is under definition (likely 'realtime' scenario over Europe allowing for direct usage at stations. Elsewhere to be defined)
- AIS Data policy is under discussion with European Commission

S1A Pass-Through Data-takes (1 RC)

Longtiude [⁰]

S-1 Overpasses in direct downlink allowing for real time usage

Thank you

💳 🔜 📲 🚍 💳 🛶 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛻 🔯 🕨 👫 🚼 🛨 📰 📾 🕍 → THE EUROPEAN SPACE AGENCY