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Introduction and Motivation

* Our goals:

* To provide a set of self-consistent and well
documented products (deformation time series and
velocities) over [Southern] California.

* To compare different existing methods of InSAR
processing, post-processing, and error correction

* To explore new approaches and best practices for
InSAR processing and interpretation

* We began as part of SCEC Community
Geodetic Model.

* Preliminary result, on the right: one frame of the
descending Sentinel-1 track 71 over Southern
California, obtained from the combination of the
results from 5 different research groups.

How it started...
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Participating groups and methods
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» Topo-correlated atmosphere removal
pros: can remove time-correlated atmosphere =g
cons: can sometimes remove deformation signals

« Weather model corrections

pros: corrects for seasonal tropospheric contribution using auxil- ~ cons: solution is poorly constrained in areas of poor

« GPS correction
pros: helps correct InSAR errors at long spatial wave-

lengths
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cons: may smooth some time-dependent signals.



Validation against GNSS
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How it’s going:
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Line-of-sight time series and velocities
from 4 overlapping ascending and
descending Sentinel tracks, from
~2015 until 2019, just before the
Ridgecrest earthquake sequence

The overall processing parameters for
each track, common for each
processing center, are shown in the
table on the left.

For all five solutions, interferograms
were produced with either GMTSAR
(Sandwell et al., 2011) or ISCE
software (Rosen et al., 2012), or with
ARIA standard products (Bekaert et
al., 2019). The choice of software for
producing interferograms has been
shown to have little impact on the
results



Challenges and best practices:
Calculating uncertainties

* To calculate the velocity uncertainties of the
combined model for each track, we borrow the
formulation from GNSS, incorporating power law

2 effects
| * Noise is best represented by a white noise +
2 Velocity . .
Uncertainty flicker noise model.
mm/yr .
y S * We use the formulation of Zhang et al.
0 (1997) Appendix B, to calculate the flicker

noise covariance matrix.

* We incorporate the noise covariance matrix
with scaled white and flicker terms into a
weighted LSQ inversion, representing time
series as sum of secular and seasonal terms.

» To calculate velocities for time series, we
use a simple epistemic estimate: we
calculate the variance between the
different input models.




Moving forward: aft

Cumulative post-seismic deformation:

JPL1

Cumulative post JPL

6.0

.9 Y

5.8

35.6

35, e
“fis0  -aze  -aze a4 ura2

Cumulative post-seismic deformation, JPL

~119.0 -118.5 -118.0 ~117.5 -117.0 -116.5 -116.0

For time series analysis, a Small BAseline
Subset approach was used, incorporating th
estiation of a coseismic offset, DEM error
correction, topo-correlated atmospheric
noise correction, and temporal filtering.
No spatial filtering is applied to avoid the
smearing across the fault rupture. The
coseismic offsets are estimated during the
time series inversion without assuming
explicit temporal function. A coherence
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threshold of 0.2 was used for pixel selection.
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All interferograms are corrected for
tropospheric delays by applying ERA-5
weather model using a modified version
of the software package TRAIN (Bekaert
et al,, 2015). Further corrections are made
using CANDIS (Tymofyeyeva et al., 2015)
with a 90-day symmetric stencil. SBAS is
performed for any pixel with a sufficient
number of coherent interferograms above a
threshold. Only post-seismic deformation
was calculated for this exercise.
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‘We first calculate time series using coherence-based
SBAS, with no additional smoothing or corrections.
‘We then solve for a coseismic offset in each pixel's
time series (in addition to a velocity, annual and
semi-annual seasonal parameters, and, where
necessary, a postseismic deformation term). We
remove the coseismic estimate from the unwrapped
interferograms that observed the earthquake. We then
calculate our time series in SBAS again, but with the
addition of the CANDIS (Common-scene-stacking)
atmospheric correction and a small smoothing term.
‘We add back in the estimated coseismic offset for a
complete displacement time series.
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Interseismic LOS time series are generated
using Small Baseline Subset processing
through the open-source MintPy software.
‘We compute the interseismic displacement
rates by fitting a long-term trend to the
derived time-series. A step function fit was
added to account for the displacement field
produced by the Ridgecrest earthquake

sequence.

er Ridgecrest
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Figure credit: USGS, SCEC




Time series comparison with GNSS:
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Moving forward: after Ridgecrest
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Our goals:

Compare methods used to
compute time series
spanning an earthquake

Understand differences in
the results that are
produced using the
different methods

Develop best practices if
possible

Determine a way to
combine multiple results
into a consensus model

Extend our time series past
Ridgecrest and provide the
community with an updated
time series and velocity
product



Moving forward: future plans

What’s Next?: Statewide and beyond!

* Integration of legacy and specialty datasets (¢.g. ERS/ENVISAT, ALOS 1/2, campaign GNSS) and InSAR
datasets from new and upcoming missions (e.g. NISAR, and ESA missions) to extend integrated time series
and velocities covering all of California (and beyond?) up to the present day.

* Continuing work toward providing time-dependent 3D deformation from a combination of GNSS and
InSAR

* Calculation of strain and strain rates in Southern California and beyond
 Continued research to implement best practices for geodetic deformation measurements.
* Transition to automation and cloud computing for basic InSAR processing.

» Workshops to elicit community engagement and feedback.
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