

Capturing the Surface Deformation of the 112 km Deep M_w 6.8 2020 Earthquake, Chile, using InSAR time series analysis

Fei Liu¹,

John Elliott¹, Tim Craig¹, Susanna Ebmeier¹,

Milan Lazecky¹, Yasser Maghsoudi Mehrani¹, & Reza Bordbari¹

¹COMET, University of Leeds, UK

Outline

Background

- Study Area: Northern Chile
- > InSAR Processing
 - Tropospheric Correction
 - Ionospheric Correction (Split Spectrum & CODE)

Earthquake Study

- Coseismic Deformation Field Retrieval (ICA)
- Source Modelling
- Intraslab Earthquake Detectability & Velocity Structure

Introduction

300

- 320

- 340

360

. 380

400

420

440

- 460

- 480

- 500

- 520

- 540

- 560

- 580

600

- 620

- 640

- 660

- 680

.700

absolute depth (km)

Why do we care about the intraslab earthquake?

Study Case: Northern Chile

Workflow: Data Processing

Atmospheric Correction: Example

Ifg 20210306-20210312 on Ascending

Ionospheric Correction

Average 33% std reduction

Mainly due to the different acquisition time (6 pm for ascending and 6 am for descending, local time)

Ascending	Average Standard deviation (mm)	Average RMSE for time series fitting (mm)	Descending	Average Standard deviation (mm)	Average RMSE for time series fitting (mm)
ifg	6.54	17.49	ifg	5.90	18.26
ifg-tropo	6.21 (5.11%)	14.25 (18.49%)	ifg-tropo	3.42 (42.04%)	8.42 (53.89%)
ifg-ion	4.34 (33.70%)	10.20 (41.64%)	ifg-ion	6.20(-4.96%)	17.85 (2.25%)
ifg-tropo-ion	2.86 (56.20%)	8.10 (53.67%)	ifg-tropo-ion	3.92(33.47%)	8.27 (54.71%)

Ionospheric Correction: Split Spectrum vs CODE

Vertical Total Electron Content (vTEC) product of Center for Orbit Determination in Europe (CODE), which is also used for ETAD ionospheric correction.

Ionospheric Correction: Split Spectrum vs CODE

Workflow: Earthquake Modelling

Coseismic Deformation Field Retrieval

Observations — — Fitting — — Earthquake event time

Modelling: InSAR & GPS

Modelling: Posterior Distribution

USGS solution

UNIVERSITY OF LEEDS

Forward Modelling & Velocity Structure

 $M_0 = \mu \cdot D \cdot A$

> Ionospheric correction on Sentinel-1 ascending data can greatly improved the

data quality in low latitude region, but is probably not worth doing on

descending data.

 \geq We retrieve coseismic deformation of an intraslab earthquake (M_w 6.8, 112 km

depth), with peak displacement ~6 mm, using InSAR time series data.

> InSAR could help to constrain the fault geometry of intraslab earthquakes and

compensate seismology for future study.

Supplementary: Ascending Time Series Example

Supplementary: Descending Correction Example

