ON THE REMOVAL OF COHERENT AMBIGUITIES IN SAR INTERFEROGRAMS: A STUDY FOR HARMONY

University of Leeds, Fringe 2023, September 14th

Dominik Richter

Marc Rodriguez-Cassola

3

Interferometric Phase Errors by Coherent Ambiguities

- Phase biases relevant systematic errors, e.g.
 - XTI X-Band 3 m baseline
 - ATI C-Band 10 m baseline
- Coherence loss

[Villano and Krieger, IEEE GRSL 2012]

Removal Using Shifted Interferograms

Short-Time Behavior of InSAR Measurements of Oceans

Sub-looks of sliding spotlight data

• TanDEM-X spotlight data

Modeled monochromatic wave

Algorithms

Infinite Impulse Response Equalizer

- Advanced "shift technique" [López-Dekker et al., IGARSS 2019]
- Stable signatures beyond synthetic aperture time
- Ambiguity Diversity
 - $\hat{s}_{AD} = T^H i + m$
 - $T^{\mathrm{H}} = \mathrm{Cov}[s, s]A^{\mathrm{H}} \mathrm{Cov}[i, i]^{-1}$
 - $\boldsymbol{m} = (\boldsymbol{I} \boldsymbol{T}^{\mathrm{H}}\boldsymbol{A})\mathrm{E}[\boldsymbol{s}]$
 - Strictly model based
 - $\operatorname{Cov}[\mathbf{i}, \mathbf{i}] = f(\mathbf{A}, \operatorname{NESN}, \beta, ...)$
 - Cov[s, s] = $f(\sigma^0, U_{10}, S_{ATI}, ...)$
 - Semi-adaptive
 - $\operatorname{Cov}[\mathbf{i}, \mathbf{i}] \approx \hat{C}_{\mathbf{i}\mathbf{i}} = \frac{1}{N} \sum_{N} \mathbf{i} \mathbf{i}^{H}, \operatorname{Cov}[\mathbf{s}, \mathbf{s}] \approx \hat{C}_{\mathbf{s}\mathbf{s}}$
 - A is modelled

Monte-Carlo Performance Evaluations

 Homogeneous simulated oceanic scene for Harmony's stereo (ATI) phase

• Sea state 6,
$$U_{10} = 15.23 \frac{\text{m}}{\text{s}}$$

•
$$E[\sigma_i^0] = -5.9 \text{ dB}$$

• NESN -20 dB

Performance Evaluation – Synthetic Gaussian Scene

Performance Evaluation – Synthetic Scene (II)

Removal of phase bias

at cost of increased phase noise

Validation on Land – Synthetic Ambiguities

Validation on Land – Synthetic Ambiguities (II)

Range extent in km

Range extent in km

11

deg

Mean phase error in

Conclusions

- Slowly spatially varying biases are well removed
 - Currents, smooth surfaces
- Evaluation sensitive to errors in reference data
 - Contributes with phase noise
- RMS error increases at medium to high coherences
 - Shows potential to improve
- Surface velocities show impact
 - How to cope with non-geometric geophysical (wave) Doppler?
 - Impact of waves and fine structures (within TSC product resolution)

Dominik Richter, DLR, 09/14/2023