A Novel Multi-Temporal DInSAR Phase Unwrapping Algorithm Based On Compressive Sensing and Minimum Cost Flow Techniques

> Muhammad Yasir, Francesco Casu, Claudio De Luca, Riccardo Lanari, Giovanni Onorato, <u>Michele Manunta</u>

> > IREA-CNR, Napoli, Italy Università degli Studi di Napoli "Parthenope", Napoli, Italy <u>manunta.m@irea.cnr.it</u>

Small BAseline Subset (SBAS) approach

Berardino et al., 2002, IEEE Trans. Geosci. Remote Sens. Pepe et al., 2005, IEEE Trans. Geosci. Remote Sens.

ESA FRINGE 2023 | University of Leeds, UK | 11-15 September 2023

Parallel SBAS medium resolution analysis at continental scale

Casu et al., 2014, IEEE JSTARS Manunta et al., 2019, IEEE TGRS Lanari et al., 2020, Rem. Sensing

ESA FRINGE 2023 | University of Leeds, UK | 11-15 September 2023

Extended Minimum Cost Flow (EMCF) PhU algorithm

The EMCF PhU algorithm is carried out via a two-step processing procedure:

Temporal PhU step (MCF PhU)

Spatial PhU step (MCF PhU)

In order to perform temporal and spatial PhU procedures, **<u>two Delaunay triangulation</u>** networks are considered:

plane

Azimuth/Range plane

Pixels to be unwrapped are evaluated in the Az/Rg plane through the triangular coherence:

$$\Upsilon(P) = \frac{1}{\Lambda} \left| \sum_{k=1}^{\Lambda} exp[j\Delta\phi_{res_{k}}^{tr}(P)] \right| > thres$$

Pepe and Lanari., 2006, IEEE TGRS

ESA FRINGE 2023 | University of Leeds, UK | 11-15 September 2023

Phase closure

DInSAR Network

Interferometric triangle

Temporal Baseline

Phase Closure Property

> In case of **correctly unwrapped phases**, for any point located at an arbitrary position (x, r), we can write:

 $\phi_1(x,r) + \phi_2(x,r) - \phi_3(x,r) = 0$

> For all triangles in Interferometric network, we have:

 $C\phi = 0$

- where, *C* is of order $Q \times M$ and Q < M
- > **Q** and **M** are the total number of triangles and interferograms of the network, repectively.

Compressive Sensing and Phase Unwrapping

What happens if phases are not unwrapped?

Violation of irrotational property over a subset of interferograms: $C\widehat{\phi} \neq 0$

Equivalently:

 $C(\widehat{\phi} - 2\pi K) = 0$ $CK = \frac{1}{2\pi}C\widehat{\phi} = \phi^{tr}$

 \succ Where $\epsilon \in \mathbb{Z}^{1 \times M}$ is the vector of PhU corrections.

 \blacktriangleright A physically sound solution is the one with a minimum number of 2π multiples.

Compressive Sensing (CS)

- Reconstructs signals from set of under sampled noisy measurements.
- Effectively solves inverse problems characterized by sparse solutions.
- > Solves L_0 norm problems through L_1 – norm minimization approaches.

- No Mathematical Representation
- Computationally inefficient

M. Manunta and Y. Muhammad., 2021, IEEE Trans. Geosci. Remote Sens.

ESA FRINGE 2023 University of Leeds, UK | 11-15 September 2023

Computationally efficient

CS-Based EMCF approach

Step-1: Temporal Phase Unwrapping

- Goal: Estimating the unwrapped phase relevant to each spatial arc (in azimuth/range plane)
- This operation is performed using L1 optimization approach (IRLS method is applied)

Step-2 : Spatial Phase Unwrapping

- **Goal**: Performing spatial phase unwrapping operation of each interferogram using MCF approach.
- Each arc is initialized to the value provided by temporal PhU.
- The cost of each arc is based on the result of the temporal algorithm.

$$\checkmark Cost = \begin{cases} 1 & (\gamma_{rnd} < th) \mid (N_{corr} > th_{sparse}) \\ 100,000 & \text{otherwise} \end{cases}$$

<u>Spatial PhU can be iterated several times by changing *th* and <u>*th*</u><u>sparse</u> to retrieve more solutions to be averaged in one final result</u>

Spatial PhU CS-Based EMCF approach

 $\checkmark Cost = \begin{cases} 1 & (\gamma_{rnd} < th) \mid (N_{corr} > th_{sparse}) \\ 100,000 & \text{otherwise} \end{cases}$

The higher the cost, the higher is the confidence on the estimated solution.

 $\checkmark N_{corr} =$ Number of nonzero elements = $||K_{rnd}||_0$

ESA FRINGE 2023 | University of Leeds, UK | 11-15 September 2023

Sentinel-1 Etna test site

- ✓ Largest active volcano in Europe.
- ✓ Data acquired by Sentinel-1 (descending orbit, Track 124) between 2015 and 2019.
- ✓ 227 S-1 Acquisitions
- ✓ 638 Interferograms

Sentinel-1 Etna test site

EMCF PhU results

CS-based PhU results

istituto per il rilevamento elettromagnetico dell'ambiente

ESA FRINGE 2023 | University of Leeds, UK | 11-15 September 2023

EMCF PhU Results on Sentinel-1 Etna test site

EMCF PhU Results

- 882,132 investigated points
- 818,816 coherent points (92.8%) (coherence > 0.9)

< -3

> 3

LOS mean deformation velocity

<u>CS-based PhU Results</u>

- 882,132 investigated points
- 838,944 coherent points (95.1%) (coherence > 0.9)

LOS mean deformation velocity

ESA FRINGE 2023 | University of Leeds, UK | 11-15 September 2023

LOS mean deformation velocity

ESA FRINGE 2023 | University of Leeds, UK | 11-15 September 2023

LOS mean deformation velocity

LOS mean deformation velocity

Sentinel-1 Stromboli test site

- ✓ One of the most active volcanoes in Europe.
- ✓ Data acquired by Sentinel-1 (descending orbit, Track 124) between 2016 and 2021.
- ✓ 282 S-1 Acquisitions
- ✓ 801 Interferograms

ESA FRINGE 2023 | University of Leeds, UK | 11-15 September 2023

CS-based PhU Results on Sentinel-1 Stromboli test site

CS-based PhU Results

- 12,124 investigated points
- 10,293 coherent points (85%)

EMCF PhU Results

- 12,124 investigated points
- 10,001 coherent points (82%)

< -3

> 3

LOS mean deformation velocity

[cm/year]

CS-based PhU Results on Sentinel-1 Stromboli test site

CS-based PhU Results on Sentinel-1 Stromboli test site

Thank you!