ESA FRINGE 2023, Sep 11-15, 2023, Leeds UK

Concurrent Car-Borne Repeat-Pass SAR Interferometry at L-Band and Ku-Band For Mobile Mapping of Ground Motion on Alpine Valley Slopes

Othmar Frey ^(1,2), Charles Werner ⁽¹⁾, Rafael Caduff ⁽¹⁾ ⁽¹⁾ Gamma Remote Sensing, ⁽²⁾ ETH Zurich

Overview

- Quick recap of our recent technology demonstrations on UAV/car-borne DInSAR at L-band to map surface displacements.
- Motivation for combined L-/Ku-band setup
- Analysis of L-/ Ku-band repeat-pass coherence and phase maps from recent measurement campaigns
- Summary & Outlook

Recap of recent demonstrations **of car-borne** and **UAV-borne** DInSAR at L-band to map surface displacements + **UAV-borne** TomoSAR demo

-1 0 1 2 3 0.0 0.2 interferometric phase [rad]

3 -2 -1 0 1 2 interferometric phase [rad]

-0.10 -0.05 0.00 0.05 0.10 LOS displacement [m]

0.4 0.6 interferometric coherence

- 23 -

Carborne L-band DInSAR based measurement of surface displacements: demonstration case "Landslide Brinzauls" Jan/Feb 2020

ETH zürich

Fast-moving land slide

- lower section, village: up to ~2.5 cm/week
- upper part: up to ~2cm/day

Map/orthophoto: swisstopo

DInSAR processing chain and (intermediate) data products to retrieve surface displacements

GAMMA REMOTE SENSING

. Juni 🔵 16. Juni

uelle: Gemeinde Albula/Alvra

Meanwhile: major mass movement event

Motivation for a combined L-band and Ku-band setup

Where are we now?

- Car-/UAV-borne DInSAR at L-band successfully demonstrated for measuring surface displacements
- **Ku-band** quasi-**stationary systems** provide an established means to measure surface displacements (with zero spatial baseline)

Why a combined L-/Ku-band car-borne DInSAR setup?

- Sensitivity to line-of-sight(LOS) displacement (Ku-band vs. L-band > 10x more sensitive)
- Different areas within the region of interest may have
 - different temporal decorrelation and
 - different displacement velocities
- "Technical" reasons:
 - Repeat-pass DInSAR at Ku-band from an agile platform is challenging.
 L-band can help to aid residual motion comp. / unwrapping (also due to atmosphere)
 - Test bed for further DInSAR developments on agile platforms.
- Long-term goal: flexible choice of frequency and (agile) platform

Gamma L-band and Ku-band FMCW SAR instruments

Gamma L-band SAR

Table 1: Gamma L-band SAR specifications		
Frequency within	1.2 - 1.4 GHz	
used center freq.	1.325 GHz	
wavelength at center freq.	$22.6~\mathrm{cm}$	
Chirp bandwidth	50 - 200 MHz	
used bandwidth	100 MHz	
range resolution (@ 100 MHz BW)	$1.5 \mathrm{m}$	
Azimuth resolution (@ full SA)	$\leq 0.5 \text{ m}$	
Azimuth resolution (@ $SA = 250$ m, $R=5$ km)	$2.3 \mathrm{~m}$	
Type	FMCW	
Chirp lengths	250 $\mu \mathrm{s}$ - 8 ms.	
Transmit power	max. 10 W <mark>(used: 5 W)</mark>	
Transmit channels	$2 \ (alternating)$	
Receive channels	4 (simultaneous)	
Elev. beamwidth $(3dB)$	$40.0 \deg$	
Azim. beamwidth (3dB)	$40.0 \deg$	
Elev. pointing angle	variable (configu-	
	ration dependent)	
Radar hardware assembly	Pelicase 1450	
Dimensions	l: 406mm	
	w: 330 mm	
	h: 174 mm	
Weight	7.65 kg	
Power LAN		

- Combined L-band and Ku-band
- Allows simultaneous data acquisition at both frequencies/

Gamma Portable Radar Interferometer

Table 2: GPRI-based Ku-band SAR specifications

Frequency within	17.1 - 17.3 GHz
used center freq.	17.2 GHz
wavelength at center freq.	1.74 cm
Chirp bandwidth	50 - 200 MHz
range res. (@200 MHz BW)	0.75 m
Туре	FMCW
Chirp lengths	250 $\mu \mathrm{s}$ - 8 ms.
ADC sampling rate	6.25 MHz
Elev. beamwidth (3dB)	25.0 deg
Azim. beamwidth (3dB)	12.5 deg

First test site for combined L-/Ku-band campaign

L-band vs. Ku-band repeat-pass DInSAR coherence

interferometric coherence

- 9 -

L-band vs. Ku-band repeat-pass DInSAR coherence

interferometric coherence

L-band vs. Ku-band repeat-pass DInSAR phase

- 11 -

- Short term (4min) versus more challenging "extreme" case:
- 4 months temporal baseline winter /summer w/ varying surface properties

4 months

4 min

L-band

....ongoing campaigns: building up L-band / Ku-band interferometric time series at Guttannen and other locations in CH.

20211011_141613_20220614_112638 L-band interferogram

Close-up view at a range distance of ca. 4 km:

- car-borne L-band SAR 246-day coherence and interferogram
- at a high spatial resolution showing
 - decorrelation along the scree channels (white lines).
- White arrows indicate distinct spots with non-zero phase that could either be caused by remnant snow patches or local motion of the rocks.

Ku-band SAR image

L-band SAR image

L-band : 20220614_112638_20220614_124409 ~ 1h 17 min

-2

-1

Λ

interferometric phase [rad]

2

Ku-band : 20220614_112638_20220614_124409 ~ 1h 17 min

L-band : 20220614_112638_20221018_113024 ~ 4 months

-2

 $^{-1}$

0

interferometric phase [rad]

2

Ku-band : 20220614_112638_20221018_113024 ~ 4 months

-2

-1

0

interferometric phase [rad]

2

L-band : 20221018_113024_20221018_114751 ~ 17 min

-2

 $^{-1}$

0

interferometric phase [rad]

2

Ku-band : 20221018_113024_20221018_114751 ~ 17 min

Summary

High-resolution repeat-pass DInSAR from agile platforms

- works at L-band. Operational! → Decent INS/GNSS required.
- at Ku-band: we are on a good track, but not entirely there, yet:
 - First car-borne **simultaneous L-/Ku-band repeat-pass DInSAR** measurements are promising:
 - Good SAR image focusing quality also at Ku-band, in general.
 - **High-resolution** SAR imagery/phase/coherence maps were obtained at both **L-band and Ku-band**.
 - As expected, the coherence is lower at Ku-band for natural terrain but good coherence and phase quality were obtained for short-term intervals in similar conditions at Ku-band.

→ Ku-band DInSAR is promising to measure subtle displacement at rock surfaces with **high-spatial resolution**.

- Car-based **Ku-band** repeat-pass DInSAR is still **work in progress...** with on-going campaigns at different sites.
- First results with the dual-frequency setup confirm the potential and complementarity of L-band and Ku-band measurements for different ground motion processes and varying conditions.

Outlook

Car-borne DInSAR campaigns:

• Building up carborne DInSAR time series at L-band and some Ku-band at several locations to develop and support ground motion applications/services.

UAV-borne DInSAR:

- Down-sized L-band SAR being developed
 - total payload : < 8 kg
 - for quadcopter drones
 - and other platforms ...

Acknowledgements

- The SAR imagery is processed onto the high-resolution digital elevation model swissALTI3D copyright: swisstopo.
- 3D visualizations in Google Earth with respective copyrights of the data provider.

Additional slides

Good repeat-pass performance for short-term and zero-baselines & InSAR volume decorrelation for increasing spatial baselines

20190213_101847_20190213_102118

- Per track, the flight trajectory tube is within
 < 1m diameter.
- over time the positioning/altitude drifts (GNSS code solution / barometric height).
- With the Scout B-100 UAV it is difficult to fly exactly on the a priori-defined tracks.

0.4

0.6

0.8

1.0

20190213_095524_20190213_101847

0.0

0.2

GAMMA

- 26 -

SAR Tomography processing of repeat-pass multi-baseline data

- Scout B-100 UAV : difficult to fly "exactly" on a-prioridefined tracks.
 - \rightarrow Non-ideal sampling (common problem):
 - Per track, the flight trajectory tube is within < 1m • diameter.
 - Non-uniform baseline distribution •
- We picked **6 tracks** that
 - cover a **total** vertical **baseline span** of approx. 5 m
 - have an average vertical track spacing of 1m with reasonable distribution. $\delta_n = \frac{\lambda r}{2L}$
 - Nominal resolution: ٠
 - Unambiguous height: •

SAR tomography (multi-look beamforming): vertical transect

Frey, O., Meier, E.: "3-D Time-Domain SAR Imaging of a Forest Using Airborne Multibaseline Data at L- and P-Bands". IEEE Trans. Geosci. Remote Sens., 49(10):3660-3664, 2011.

- 28 -

Solution for SAR imaging

Frey, O., Magnard, C., Rüegg, M., Meier, E.: "Focusing of Airborne Synthetic Aperture Radar Data from Highly Nonlinear Flight Tracks". IEEE Trans. Geosci. Remote Sens., 47(6):1844-1858, June 2009.

- 29 -

Interferometric-coherence-based estimate of the quality of the interferometric phase/displacement measurement

To assess the precision of the interferometric phase measurement the formula by Rodriguez & Martin 1992 can be used:

$$\sigma_{\phi} = \sqrt{\frac{1}{2 \cdot N_L} \frac{1 - \left|\gamma\right|^2)}{\left|\gamma\right|^2}}$$

e.g.:

with a number of looks N_L=50 a coherence = 0.7 corresponds to a **phase standard deviation of 5.8 deg** or:

a **standard deviation of the LOS displacement of 1.8 mm** for our L-band system.

0.4

ETH zürich

0.0

0.2

1.0

0.8

0.6

interferometric coherence

- 30 -

14-day coherence and phase 2020-01-20 to 2020-02-03

2020-01-20: dry 2020-02-03: partially light rain, tot. 5.9 mm (Thusis, MeteoSchweiz: THS)

-50 0 50 interferometric phase [deg] Impact of changing weather conditions/precipitation 1-day coherence and phase 2020-02-03 (rainy) to 2020-02-04 (snow)

- 2020-02-03: partially light rain, tot. 5.9 mm (Thusis, MeteoSchweiz: THS)
- 2020-02-04: snow fall, tot. 5 cm (Thusis, MeteoSchweiz: THS)

0 interferometric phase [deg]

-150

-100

-50

ETH züric

GAMMA REMOTE SENSING

100

50

150

Solution for highly-precise navigation

HGUIDE n580 TYPICAL KEY CHARACTERISTICS		
GNSS Capability (Varies by Configuration)	SBAS, Post-Processed Kinematic (PPK), and RTK mode options Single or Dual Antenna capable	
GNSS Signals (Varies by Configuration)	GPS L1 C/A, L1C, L2C, L2P, L5; GLONASS L1 C/A, L2 C/A, L2P, L3, L5; BeiDou B1, B2; Galileo E1, E5 AltBOC, E5a, E5b; NavIC (IRNSS) L5; SBAS L1, L5 QZSS L1 C/A, L1C, L2C, L5; L-Band up to 5 channels	
Supply Voltage	+9VDC to +36VDC	
Power Consumption	7 Watts (Varies by Configuration)	
Weight	495g (1.1 lbs)	
Volume / Size	324 cm ³ (19.8 in ³), 9cm x 6cm x 6cm (Not Including Mounting Feet)	
Operating Temperature Range	-40°C to +71°C	
Packaging Rating	IP68	
Communication Ports	Primary Navigation Interface, 1MBit, RS-422 Secondary Navigation Interface, 1MBit, 5V CMOS RTCM3 Corrections Interface, 115.2KBit, RS-422	
Discrete Signals	PPS 5V CMOS Output	

HGUIDE n580 NAVIGATION PERFORMANCE			
POSITION	ACCURACY	HEADING ACCURACY ¹	PITCH/ROLL ACCURACY
Horizontal (m, 1σ)	Vertical (m, 1σ)	(°, 1ơ)	(°, 1ơ)
0.01 RTK 0.6 SBAS	0.025 RTK 0.6 SBAS	0.05	0.015

HGUIDE n580 RTK DUAL ANTENNA PERFORMANCE - GNSS OUTAGES WITH NO AIDING			
RMS Error	3 Second	10 Second	30 Second
Horizontal (meter)	0.09	0.2	1
Vertical (meter)	0.045	0.1	0.5
Heading (degree)	0.06	0.07	0.08

Solution for highly-precise navigation

AUTOMATISIERUNGS- UND REGELSYSTEME MBH WWW.IMAR-NAVIGATION.DE

Technical Data of iNAV-RQH-10018

Data Output:	Heading, Roll, Pitch, Angular Velocity, Veloc	ty (body and world),	
	Position, Raw data, internal statuis information	on, odo and GPS inf.	
True Heading:	< 0.025° sec(lat) free inertial; 0.01° with DGPS, 0.005 ° postproc RTK		
Attitude Accuracy:	< 0.01° free inertial (< 0.005° with DGPS, 0.0	02° postproc with RTK aiding)	
Position Accuracy:	0.6 nm/hr free inertial; < 1 m GPS (S/A off) a	nd < 10 cm RTK online,	
	< 30 cm DGPS and 2 cm RTK/INS postproc		
	< 0.1 % distance travelled (with odometer and GPS, applic. depend.)		
	< 0.2 % dist.trav. on underwater vehicles (inc	cl. RDI DVL interface)	
Velocity Accuracy:	5 mm/s (aided with L1/L2 RTK GPS receiver	, < 2 mm/s postproc RTK)	
Alignment Time:	< 10 minutes on-shore, < 25 minutes off-sho	re	
Range:	\pm 400 °/s (no angle limitation)	±20 g	
Drift (unaided) / Offset:	< 0.002 °/hr	< 25 µg	
Bias Stability:	< 0.002 °/hr (const. temp.)	< 10 µg	
Random Walk / Q:	< 0.0015 °/√h	< 8 μg/sqrt(Hz)	
Resolution:	0.0003 ° (1,13"), < 0.001 °/s	< 5 µg (depends on data rate)	
Scale/Linearity Error:	< 5 ppm / < 5 ppm	< 100 ppm / < 20 μg/g²	
Axis Misalignment:	< 25 µrad		
Data Output Rate:	1300 Hz, internal bandwidth 300 Hz		
Data Latency:	< 3 ms		
Data storage:	up to 16 GByte on internal flash drive (option)	
Output (options):	RS232/422 UART, Ethernet TCP/IP / UDP, PPT (Pulse Per Time), PPS,		
	CAN, MIL-STD1553B		
Inputs (options):	internal/external (RTK)GNSS (standard: GPS/GLONASS/GALILEO integrated),		
	marker event trigger, 3 x odometer (RS422 I	evel), [PPS / SYNC]	
Connectors:	MIL-C-38999 III		
Temperature (case):	-40+65°C operating, (+71°C opt.), -46+85°C not operating		
Rel. Humidity:	8100%, IP67		
Magnetic. insensitivity:	< 500 µTesla (5 Gauss)		
MTBF / MTTR:	> 25,000 hrs (estimated for surveying applications) / < 30 minutes		
Shock, Vibration:	25 g, 11 ms ;60 g, 5 ms (operating); 20…2000 Hz, 3 g rms		
Qualification:	MIL-STD-810F, MIL-STD-461E, MIL-STD-704D, DO160E		
Power:	1134 V DC, < 45 W; 50 ms hold up time according to DO160E		
Weight / Size:	9.0 kg / approx. 299 x 213 x 179 mm (without connectors)		
Software:	internal online Kalman filter, NavCommand, INS/RTK-GPS postproc. (option)		

