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Why automate the detection of volcanic unrest with Sentinel-1 InNSAR data?
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Previous results: isolating large deformation and detecting changes in rate

Image: Google Earth



Our new monitoring algorithm: LiCSAlert

Increase the variance of deformation signals
to recover them.

Apply ICA temporally at stratovolcanoes.

Visualise status for large number of volcanoes
(using deep learning).

Apply globally by implementing on JASMIN
computing system

. Gaddesetal., in prep.
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Our new monitoring algorithm: LiCSAlert

Increase the variance of deformation signals to
recover them.

Apply ICA temporally at stratovolcanoes.
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LiCSAlert: ICA to isolate deformation from noise (atmosphere)

. Create a network of interferograms that maximises deformation variance.
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LiCSAlert: ICA to isolate deformation from noise (atmosphere)

. Create a network of interferograms that maximises deformation variance.

Source 0 Source 1 Source 2 Source 3

DEM L L
-
sy
%,:;} 2 i N
- W
Y e o
T —— T _ _
200 400 T T | T T T T f
0 200 400 0

Height (m) 400

Source 4 Source 5

Independent

Components
(ICs)

IC to DEM
correlations

200 400 0 200 400 0 200 400

Umirbht fanl

|IC use
VS
temporal
I

IC usage strength




LiCSAlert: ICA to isolate deformation from noise (atmosphere)

. Create a network of interferograms that maximises deformation variance.
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LiCSAlert: ICA to isolate deformation from noise (atmosphere)

. Create a network of interferograms that maximises deformation variance.
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LiCSAlert: ICA to isolate deformation from noise (atmosphere)

. Create a network of interferograms that maximises deformation variance.
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LiCSAlert: monitoring using the ICA signals

Use ICs (latent
sources) from ICA
step.

Take a baseline stage
of 1-2 years.

Invert to fit each
interferogram using ICs

Record residual of fit.

Fit linear trend through
|IC time courses and
residual.

Run monitoring.

o from trend line

Gaddes et al., in prep.
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LiCSAlert: monitoring using the ICA signals
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LiCSAlert: monitoring using the ICA signals
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LiCSAlert: monitoring using the ICA signals

« Changes in inflation
rate are flagged in the
time course of ICO.

IC2 = Topographically
correlated APS — note
annual nature.

Some false positives in
the residual, but they
are usually cancelled
when the next
acquisition is available.

« Gaddesetal.,in prep.
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« Changes in inflation
rate are flagged in the
time course of ICO.
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At stratovolcanoes, sICA often works poorly

How non-Gaussian are signals in
time/space?

How independent are signals in
time/space?

How many samples do we have in space
(pixels) vs in time (acquisitions)?

Synthetic example where we vary the
spatial independence.

— Non-overlapping (independent)
signals work well with sICA.

— When signals overlap, sICA is not
accurate.

Spatial separalion: U Km

« Modified from Gaddes et al., 2018
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At stratovolcanoes, sICA often works poorly
Synthesised
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At stratovolcanoes, sICA often works poorly

Synthesised
« How non-Gaussian are signals in
time/space?

. How independent are signals in
time/space? Spatial separation: 6 Km

« How many samples do we have in space
(pixels) vs in time (acquisitions)?

« Synthetic example where we vary the
spatial independence.
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signals work well with sICA.
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LiCSAlert: temporal ICA at Vesuvius

2014/10/31 - 2021/12/23

. In 2018, ~100 acquisitions, but now 40.88°N
~300.

« LICSBAS time series shows highly
variable deformation (direction

reversal).
0.0 04 08 1.2 6
« Challenging to monitor without Height (km) LOS Disp- {m)
separating deformation from
atmosphere.

Gaddes et al., in prep.
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LiCSAlert: temporal ICA at Vesuvius — isolating deformation

« IC2 is correlated with interferogram temporal baseline.
« IC4 is strongly correlated with the DEM.
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LiCSAlert: temporal ICA at Vesuvius — isolating deformation

. IC2 is correlated with interferogram temporal baseline.
. IC4 is strongly correlated with the DEM.
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LiCSAlert: temporal ICA at Vesuvius - monitoring

« IC2 shows only linear motion.
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LiCSAlert: temporal ICA at Vesuvius - monitoring

« IC2 shows only linear motion.
. IC4 (and IC5) show sinusoidal motion with little linear trend.
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(Near) global application: results

. La Palma, Canary Islands:
— Flagging of the new deformation associated with 2021 eruption.
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Gaddes et al., in prep.
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How to visualise thousands of results?

« Condense our LiCSAlert figure into 2 values:
— Changes in existing deformation
— New deformation.

. But, we have to first identify deformation source.

— Use deep learning (CNN):

— Red: model predictions, black: human label:

dyke: 0.8E
sillfpoint: 0.08

no def - 0.04 i-|||-'|5l::-. !.-I_t. '__Z L

L o }
_|.I|l__

dyke nao def.

sillfpoint: 1.0
dyke: 0.0

no def.: UL

sillfpoint

12.6

« Gaddesetal., in review
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Visualising the status: 1 volcano, many times
. Sierra Negra - Change to existing deformation prior to eruption (x axis).

- New deformation associated with eruption (y axis).
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Visualising the status: 1 volcano, many times

. Sierra Negra - Change to existing deformation prior to eruption (x axis).
- New deformation associated with eruption (y axis).
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Visualising the status: 1 volcano, many times

. Sierra Negra - Change to existing deformation prior to eruption (x axis).
- New deformation associated with eruption (y axis).
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Visualising the status: 1 volcano, many times

. Erta Ale - New deformation associated with 2017 eruption (y axis).
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Visualising the status: 1 volcano, many times

. Erta Ale - New deformation associated with 2017 eruption (y axis).
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Visualising the status: ~500 volcanoes, 1 time
« Applied to ~1500 LICSAR frames
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LICSAlert: Plans

. Improve the quality of our LICSBAS time series (collaborate with the COMET Volcanic and Magmatic

Deformation Portal backend data?).

« Web-based interactive LiCSAlert figure (possibly on COMET Volcano Portal).

« Community use/feedback from case studies — the code is on GitHub!

Pinned

B VolcNet | Public

] LicsAlert | Public

=

Volcano monitoring using Sentinel-1 InSAR data
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LICSAlert: Plans

« Improve the quality of our LICSBAS time series (collaborate with the COMET Volcanic and Magmatic
Deformation Portal backend data?).

« Web-based interactive LiCSAlert figure (possibly on COMET Volcano Portal).

« Community use/feedback from case studies — the code is on GitHub!
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e Conclusions

* Networks that increase the variance of deformation signals are
needed when using sICA at most volcanoes.

« At stratovolcanoes, tICA outperforms sICA.

« LiCSAlert is able to detect subtle changes in deformation rate
(e.g. Campi Flegrei).

« LiCSAlert is able to detect when new deformation enters a time series (e.g. Erta Ale,
La Palma).

* Using deep learning to identify the deformation source allows us to condense much of a L|CS
figure into a simple 2D plot. 2

LTC S COMET-LICS Sentinel-1 InSAR portal @Q DEEPVO @ COMET

LRI S Tl SSnTINENTH Fade) e




« Conclusions Guatgmala

* Networks that increase the variance of deformation signals are
needed when using sICA at most volcanoes.

« At stratovolcanoes, tICA outperforms sICA.

« LiCSAlert is able to detect subtle changes in deformation rate
(e.g. Campi Flegrei).

« LiCSAlert is able to detect when new deformation enters a time series (e.g. Erta Ale,
La Palma).

figure into a simple 2D plot.

L1}
L I ‘ S COMET-LICS Sentinel-1 InSAR portal

LRI S Tl SSnTINENTH Fade) e



« Conclusions Guatgmala

* Networks that increase the variance of deformation signals are
needed when using sICA at most volcanoes.

« At stratovolcanoes, tICA outperforms sICA.

« LiCSAlert is able to detect subtle changes in deformation rate
(e.g. Campi Flegrei).

« LiCSAlert is able to detect when new deformation enters a time series (e.g. Erta Ale,
La Palma).

* Using deep learning to identify the deformation source allows us to condense much of a L|CS
figure into a simple 2D plot. 2 ]

LTC S COMET-LICS Sentinel-1 InSAR portal @Q DEEPVO @ COMET

LRI S Tl SSnTINENTH Fade) e




« Conclusions Guatgmala

* Networks that increase the variance of deformation signals are
needed when using sICA at most volcanoes.

« At stratovolcanoes, tICA outperforms sICA.

« LiCSAlert is able to detect subtle changes in deformation rate
(e.g. Campi Flegrei).

« LiCSAlert is able to detect when new deformation enters a time series (e.g. Erta Ale,
La Palma).

* Using deep learning to identify the deformation source allows us to condense much of a L|CS
figure into a simple 2D plot. 2 ]

LTC S COMET-LICS Sentinel-1 InSAR portal @Q DEEPVO @ COMET

LRI S Tl SSnTINENTH Fade) e




« Conclusions Guatgmala

* Networks that increase the variance of deformation signals are
needed when using sICA at most volcanoes.

« At stratovolcanoes, tICA outperforms sICA.

« LiCSAlert is able to detect subtle changes in deformation rate
(e.g. Campi Flegrei).

« LiCSAlert is able to detect when new deformation enters a time series (e.g. Erta Ale,
La Palma).

LiCSAlert figure into a simple 2D plot.

LTC S COMET-LICS Sentinel-1 InSAR portal @Q DEEPVO @ COMET

LRI S Tl SSnTINENTH Fade) e




Title

« bullet

o Small text.



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Slide Number 66

