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Previous results: isolating large deformation and detecting changes in rate

 Image: Google Earth



Our new monitoring algorithm: LiCSAlert

 Increase the variance of deformation signals 
to recover them.  

 Apply ICA temporally at stratovolcanoes. 

 
 Visualise status for large number of volcanoes 

(using deep learning).

 
 Apply globally by implementing on JASMIN 

computing system 
 

 Gaddes et al., in prep.
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LiCSAlert: ICA to isolate deformation from noise (atmosphere)

 Create a network of interferograms that maximises deformation variance.  
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 Create a network of interferograms that maximises deformation variance.  
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LiCSAlert: monitoring using the ICA signals

 Use ICs (latent 
sources) from ICA 
step.
 

 Take a baseline stage 
of 1-2 years.    
 

 Invert to fit each 
interferogram using ICs
 

 Record residual of fit.  
 

 Fit linear trend through 
IC time courses and 
residual.
 

 Run monitoring.  

 Gaddes et al., in prep.  
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LiCSAlert: monitoring using the ICA signals

 Changes in inflation 
rate are flagged in the 
time course of IC0.
 

 IC2 = Topographically 
correlated APS – note 
annual nature.  
 

 Some false positives in 
the residual, but they 
are usually cancelled 
when the next 
acquisition is available.    

 Gaddes et al., in prep.  
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At stratovolcanoes, sICA often works poorly 

 How non-Gaussian are signals in 
time/space?  
 

 How independent are signals in 
time/space?
 

 How many samples do we have in space 
(pixels) vs in time (acquisitions)? 
 

 Synthetic example where we vary the 
spatial independence.

→ Non-overlapping (independent) 
signals work well with sICA.     

→ When signals overlap, sICA is not 
accurate.  

 Modified from Gaddes et al., 2018

Synthesised     
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LiCSAlert: temporal ICA at Vesuvius

 In 2018, ~100 acquisitions, but now 
~300.  
 

 LiCSBAS time series shows highly 
variable deformation (direction 
reversal).  
 

 Challenging to monitor without 
separating deformation from 
atmosphere.  

 Gaddes et al. In prep.
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LiCSAlert: temporal ICA at Vesuvius – isolating deformation

 IC2 is correlated with interferogram temporal baseline.  
 IC4 is strongly correlated with the DEM.  
  

 Small text.  

Usage strength 
vs 

temporal baseline
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LiCSAlert: temporal ICA at Vesuvius - monitoring

 IC2 shows only linear motion.  
 IC4 (and IC5) show sinusoidal motion with little linear trend.  

  
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(Near) global application: results
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How to visualise thousands of results?

 Condense our LiCSAlert figure into 2 values:
 → Changes in existing deformation
 → New deformation.  

 
 But, we have to first identify deformation source. 



→ Use deep learning (CNN): 
 

 → Red: model predictions, black: human label: 

 Gaddes et al., in review
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Visualising the status: 1 volcano, many times
 Sierra Negra - Change to existing deformation prior to eruption (x axis).  

  - New deformation associated with eruption (y axis).  
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Visualising the status: 1 volcano, many times
 Erta Ale - New deformation associated with 2017 eruption (y axis).  



Visualising the status: 1 volcano, many times
 Erta Ale - New deformation associated with 2017 eruption (y axis).  



Visualising the status: ~500 volcanoes, 1 time
 Applied to ~1500 LiCSAR frames



LiCSAlert: Plans

 Small text.  

 Improve the quality of our LiCSBAS time series (collaborate with the COMET Volcanic and Magmatic 
Deformation Portal backend data?).  
 

 Web-based interactive LiCSAlert figure (possibly on COMET Volcano Portal).  
 

 Community use/feedback from case studies – the code is on GitHub! 
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Conclusions

 Some text

• Conclusions

• Networks that increase the variance of deformation signals are
needed when using sICA at most volcanoes.  
 

• At stratovolcanoes, tICA outperforms sICA.  
 

• LiCSAlert is able to detect subtle changes in deformation rate 
(e.g. Campi Flegrei).  
 

• LiCSAlert is able to detect when new deformation enters a time series (e.g. Erta Ale,
La Palma).  
 

• Using deep learning to identify the deformation source allows us to condense much of a LiCSAlert
figure into a simple 2D plot.  
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Title

 bullet

 Small text.  
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