Locus and type of synseismic, secondary fault slip during large-magnitude earthquakes

Henriette Sudhaus, John Begg, Vasiliki Mouslopoulou, Tilman May

henriette.sudhaus@ifg.uni-kiel.de
www.bridges.uni-kiel.de

A Mw6.3 in Xizang, Tibet, 2020 ascending S1 interferogram

A Mw6. 3 in Xizang, Tibet, 2020

ascending S1 interferogram

"synseismic": likely happens during the earthquake,
is observed in coseismic interferograms
"secondary": on a lower order of amplitude compared to main rupture deformation
"fault slip": activation/movement along faults
arrows point to phase steps

Quick glimpse at regional tectonics
Faults based on the database
"Active Faults of Eurasia"
negative
flower structure

Sudhaus, Begg, Mouslopoulou, May
ESA fringe 2023 Leeds
$3 / 18$

A Mw6.3 in Xizang, Tibet, 2020 ascending S1 interferogram
arrows point to phase steps

A Mw6.3 in Xizang, Tibet, 2020 East component of displacement
arrows point to phase steps

Quick change of perspective on the problem

Quick change of perspective on the problem

Quick change of perspective on the problem

A Mw6.3 in Xizang, Tibet, 2020

East component of displacement

available \& shown components
of strain vector:
$\epsilon=\left(\begin{array}{cc}\epsilon_{\text {ee }} & \epsilon_{\text {en }} \\ \epsilon_{n e} & \epsilon_{n n} \\ \epsilon_{(u+n) e} & \epsilon_{(u+n) n}\end{array}\right)$
blue linear features:
east-side moves west red linear features:
east-side moves east

More fault activations with a M6.3 earthquake

Tyrnavos earthquake (Greece) Mw6.3, on Mar 32020 (Greece)

Sentinel-1 interferogram
spanning 6 days

More fault activations with a M6.3 earthquake

Tyrnavos earthquake
Mw6.3, on Mar 32020 (Greece)
Sentinel-1 interferogram
spanning 6 days
\exists coseism. surface rupture
\square fault model projection

More fault activations with a M6.3 earthquake

Tyrnavos earthquake
Mw6.3, on Mar 32020 (Greece)
Sentinel-1 interferogram
spanning 6 days
\exists coseism. surface rupture
\square fault model projection

More fault activations with a M6.3 earthquake

Tyrnavos earthquake
Mw6.3, on Mar 32020 (Greece)
Sentinel-1 interferogram
spanning 6 days
\exists coseism. surface rupture
\square fault model projection

More fault activations with a M6.3 earthquake

Tyrnavos earthquake
Mw6.3, on Mar 32020 (Greece)
Sentinel-1 interferogram
spanning 6 days
\exists coseism. surface rupture
\square fault model projection

Observations of synseismic fault activation

Observed character:
Phase jumps of $\sim 1 \mathrm{~cm}$, quite linear
and along kilometers at pre-existing faults.
Slip direction varies.

Observations of synseismic fault activation

Analysis of synseismic fault activation

Slip direction varies spatially. It sometimes flips along the same fault.
Mapping of synseismic fault activations

Normal and reverse faulting seems to prevail.

Any north components are only weakly projected in InSAR imagery and might be missed.

Is there a relationship of fault motion and coseismic stress change?

Analysing the surface strain field

based on displacement maps, here observed with InSAR
strain vector at surface:
$\epsilon=\left(\begin{array}{lll}\frac{\partial E}{\partial e} & \frac{\partial E}{\partial n} & \frac{\partial E}{\partial u} \\ \frac{\partial N}{\partial e} & \frac{\partial N}{\partial n} & \frac{\partial N}{\partial u} \\ \frac{\partial U}{\partial e} & \frac{\partial U}{\partial n} & \frac{\partial U}{\partial u}\end{array}\right)=\left(\begin{array}{ccc}\epsilon_{e e} & \epsilon_{e n} & \epsilon_{e u} \\ \epsilon_{n e} & \epsilon_{n n} & \epsilon_{n u} \\ \epsilon_{u e} & \epsilon_{u n} & \epsilon_{u u}\end{array}\right)$,

The strain tensor at the surface:
$\epsilon=\left(\begin{array}{cc}\epsilon_{e e} & \frac{1}{2}\left(\epsilon_{e n}+\epsilon_{n e}\right) \\ \frac{1}{2}\left(\epsilon_{e n}+\epsilon_{n e}\right) & \epsilon_{n n}\end{array}\right)$,
with the dilatation being $\epsilon_{\text {dil }}=\epsilon_{e e}+\epsilon_{n n}$

Analysing the surface strain field

based on displacement maps, here observed with InSAR
strain vector at surface:
$\epsilon=\left(\begin{array}{lll}\frac{\partial E}{\partial e} & \frac{\partial E}{\partial n} & \frac{\partial E}{\partial u} \\ \frac{\partial N}{\partial e} & \frac{\partial N}{\partial n} & \frac{\partial N}{\partial u} \\ \frac{\partial U}{\partial e} & \frac{\partial U}{\partial n} & \frac{\partial U}{\partial u}\end{array}\right)=\left(\begin{array}{lll}\epsilon_{e e} & \epsilon_{e n} & \epsilon_{e u} \\ \epsilon_{n e} & \epsilon_{n n} & \epsilon_{n u} \\ \epsilon_{u e} & \epsilon_{u n} & \epsilon_{u u}\end{array}\right)$,

The strain tensor at the surface:
$\epsilon=\left(\begin{array}{c}\epsilon_{e e} \\ \frac{1}{2}\left(\epsilon_{e n}+\epsilon_{n e}\right)\end{array}\right.$
$\left.\begin{array}{c}\frac{1}{2}\left(\epsilon_{e n}+\epsilon_{n e}\right) \\ \epsilon_{n n}\end{array}\right)$,
with the dilatation being $\epsilon_{\text {dil }}=\epsilon_{e e}+\epsilon_{n n}$

Problem: strain vector from InSAR observations is incomplete and biased:
$\epsilon=\left(\begin{array}{ccc}\epsilon_{e e} & \epsilon_{e n} & \epsilon_{e u} \\ \epsilon_{n e} & \epsilon_{n n} & \epsilon_{n u} \\ \epsilon_{(u+n) e} & \epsilon_{(u+n) n} & \epsilon_{(u+n) u}\end{array}\right)$

Analysing the surface strain field

based on displacement maps, here observed with InSAR
strain vector at surface:
$\epsilon=\left(\begin{array}{lll}\frac{\partial E}{\partial e} & \frac{\partial E}{\partial n} & \frac{\partial E}{\partial u} \\ \frac{\partial N}{\partial e} & \frac{\partial N}{\partial n} & \frac{\partial N}{\partial u} \\ \frac{\partial U}{\partial e} & \frac{\partial U}{\partial n} & \frac{\partial U}{\partial u}\end{array}\right)=\left(\begin{array}{lll}\epsilon_{e e} & \epsilon_{e n} & \epsilon_{e u} \\ \epsilon_{n e} & \epsilon_{n n} & \epsilon_{n u} \\ \epsilon_{u e} & \epsilon_{u n} & \epsilon_{u u}\end{array}\right)$,

The strain tensor at the surface:
$\epsilon=\left(\begin{array}{cc}\epsilon_{e e} & \frac{1}{2}\left(\epsilon_{e n}+\epsilon_{n e}\right) \\ \frac{1}{2}\left(\epsilon_{e n}+\epsilon_{n e}\right) & \epsilon_{n n}\end{array}\right)$,
with the dilatation being $\epsilon_{\text {dil }}=\epsilon_{e e}+\epsilon_{n n}$

Problem: strain vector from InSAR observations is incomplete and biased.

Work-around: Use a strain vector from synthetic displacements based on a seismic rupture model.

Analysing the surface strain field

based on displacement maps, here observed with InSAR
strain vector at surface:
$\epsilon=\left(\begin{array}{lll}\frac{\partial E}{\partial e} & \frac{\partial E}{\partial n} & \frac{\partial E}{\partial u} \\ \frac{\partial N}{\partial e} & \frac{\partial N}{\partial n} & \frac{\partial N}{\partial u} \\ \frac{\partial U}{\partial e} & \frac{\partial U}{\partial n} & \frac{\partial U}{\partial u}\end{array}\right)=\left(\begin{array}{lll}\epsilon_{e e} & \epsilon_{e n} & \epsilon_{e u} \\ \epsilon_{n e} & \epsilon_{n n} & \epsilon_{n u} \\ \epsilon_{u e} & \epsilon_{u n} & \epsilon_{u u}\end{array}\right)$,

The strain tensor at the surface:
$\epsilon=\left(\begin{array}{cc}\epsilon_{e e} & \frac{1}{2}\left(\epsilon_{e n}+\epsilon_{n e}\right) \\ \frac{1}{2}\left(\epsilon_{e n}+\epsilon_{n e}\right) & \epsilon_{n n}\end{array}\right)$,
with the dilatation being $\epsilon_{\text {dil }}=\epsilon_{e e}+\epsilon_{n n}$

Problem: strain vector from InSAR observations is incomplete and biased.

Work-around: Use a strain vector from synthetic displacements based on a seismic rupture model.

Reading dilatation:

A positive value shows a surface under extension.
A negative value shows a surface under compression.

A Mw6. 3 in Xizang, Tibet, 2020 predicted dilatation:
$\epsilon=\left(\begin{array}{ll}\epsilon_{\mathbf{e e}} & \epsilon_{e n} \\ \epsilon_{n e} & \epsilon_{\mathbf{n n}} \\ \epsilon_{u e} & \epsilon_{u n}\end{array}\right)$

Dilatation $\epsilon_{\text {dil }}=\epsilon_{e e}+\epsilon_{n n}$ red area: extension
blue area: compression
strain predictions based on rupture modeling by
L. Diefenbacher

A Mw6.0 in Central Crete, 2021

predicted strain:

$$
\epsilon=\left(\begin{array}{ll}
\epsilon_{\mathrm{ee}} & \epsilon_{e n} \\
\epsilon_{n e} & \epsilon_{\mathrm{nn}} \\
\epsilon_{u e} & \epsilon_{u n}
\end{array}\right)
$$

Dilatation $\epsilon_{\text {dil }}=\epsilon_{e e}+\epsilon_{n n}$ red area: extension blue area: compression
strain predictions based on rupture modeling by J. Knüppel

Fault activation w.r.t. coseismic strain

Normal and reverse faulting do not generally follow the strain regime pattern predicted by the simple fault model.

Deviation may stem from model simplifications:

- single rectangular fault with uniform slip
- horizontally layered medium

Fault activation w.r.t. coseismic strain

Normal and reverse faulting do not generally follow the strain regime pattern predicted by the simple fault model.

Deviation may stem from model simplifications:

- single rectangular fault with uniform slip
- horizontally layered medium
- More complex models can fit the observations better

Fault activation w.r.t. coseismic strain

Conclusions

- Faults react to earthquakes at neighbouring faults, also for earthquakes $\mathrm{M}<7$. (two more examples online in the supplementary talk material)
- synseismic fault activation releases part of the imposed coseismic stress.
- We can map very small fault slips from space and detect previously unmapped faults.
- Potentially these activation can help to better constrain models of the coseismic activation

