Experimental Studies on Dual Frequency InSAR Application for Snow Mass Monitoring

Thomas Nagler, Helmut Rott, Stefan Scheiblauer, Jens Fischer, Ralf Horn, and Julia Kubanek

FRINGE, Leeds, September 2023

OBJECTIVES:

- Testing and evaluating methods for snow mass (SWE) retrievals in Alpine environment with focus on the repeat-pass interferometric SAR (RP-InSAR) approach.
- Proof of concept for applying geostationary SAR systems for InSAR SWE retrieval, specifically addressing the feasibility of the HydroTerra mission (geostationary C-band SAR) that was proposed to ESA in response to the Call for Earth Explorer 10 Mission Ideas.

enveo

 Assessing the performance of polar orbiting L-band InSAR for SWE retrievals, in support of preparations for the mission ROSE-L (Radar Observation System for Europe at L-band).

Airborne and In-situ Measurements

DLR F-SAR C+L	C-band	L-band
Center frequency	5300 MHz	1325 MHz
Signal bandwidth	384 MHz	150 MHz
Azimuth resolution	0.50 m	0.60 m
Range resolution	0.50 m	1.30 m
Pixel size	0.2 m x 0.3 m	0.4 m x 0.6 m

F-SAR, geocoded $\sigma^{\circ}VV$ image OB, MB, UB - Sites of field measurements and areas for SWE retrieval validation

Test site Wörgetal Location of snow pits & corner reflectors

L-Band R-G-B = HH-HV-VV

OB

Sov

UB

Track 17

Field Measurements and F-SAR Flights

Buto		Tota Additing
18/23.2.2021		Exploration of test area, location for CR, snow pits, transects
1.3.2021		Setup of CR
2.3.2021	FL1	Check of CR, and completion, snow measurements
3.3.2021	FL2	CR check, snow measurements
4.3.2021	FL3+4	CR check, snow measurements Snow Event SE1
6.3.2021	FL5	CR check, snow measurements ~ ~10 cm fresh snow
8.3.2021	FL6	-
9.3.2021	FL7	CR check, snow measurements
13.3.2021		Geodetic GPS measurements of CR Snow Event SE2
19.3.2021	FL8	CR check, snow measurements
30.3.2021		Cleaning of Test area

SWE Retrieval by means of Repeat-pass SAR Interferometry

SWE

0.87 m

0.19 m

L-Band: 131mm

C-Band: 29mm

Basic Approach:

Differential processing of repeat-pass InSAR data to obtain $\Delta \phi_{snow}(t_2-t_1)$

 $\Delta \phi = \Delta \phi_{flat} + \Delta \phi_{topo} + \Delta \phi_{atm} + \Delta \phi_{snow}$

The interferometric phase delay in dry snow is related to snow depth and density (for backscatter dominated by signal of snow/ground interface)

$$\Delta SWE = \rho_s \,\Delta d_s \qquad \epsilon'(\rho_s) = 1 + 1.60 \,\rho_s + 1.86 \,\rho_s^3 \,[g \, cm^{-3}]$$

$$\Delta \phi_{snow} = -\frac{4\pi}{\lambda} \Delta d_{s} \cos \alpha \left(\cos \theta_{i} - \sqrt{\varepsilon - \sin \theta_{i}^{2}} \right)$$

Linear approximation for $\theta_i \leq 40^\circ$: $\Delta SWE = -\frac{\lambda}{2\pi} \frac{\cos\theta_i}{16\cos\alpha} \Delta \phi_{snow}$ For obtaining $\Delta \phi_{snow}$ from $\Delta \phi$ a reference phase (sites with zero or known ΔSWE) is needed: $\Delta \phi_{snow} = \Delta \phi - \Delta \phi_{ref}$

Critical issues:

- Temporal decorrelation (related to snowfall, snow drift,)
- Reference phase at sites with zero or known \triangle SWE *
- 2π phase ambiguity
- Correction for change in $\Delta \phi_{atm}$ *

* Wörgetal-campaign: $\Delta \phi_{CR}$ is used as reference phase

Coherence and Phase Images C-band

Coherence and Phase Images L-band

Track 10 – Radar Imaging Geometry – VV Polarisation

SWE Retrieval Performance – Comparison with Field Measurements

- High agreement between average retrieved and in situ Δ SWE
- No systematic differences between HH and VV–based retrievals
- Some difference between Track 10 & Track 11 retrieval, most likely related to uncertainty of the reference phase (corner reflector)

enveo

Map of snow accumulated on 5 March 2021, derived from *C-band VV InSAR* data

Map of snow accumulated during the period 14 to 18 March 2021, derived from *L-band VV InSAR* data

Sentinel-1 C-band InSAR Phase

Critical issues:

- removal of atmospheric phase delays
- selection of reference points for ΔSWE retrieval

15-21/11/2019 significant snow fall early winter

ALOS-2 PALSAR INSAR based SWE Product

Conclusions

• The Wörgetal campaign, based on L- and C-band airborne SAR data, confirms the high potential of the repeat-pass InSAR approach, for observing the mass of snow accumulating in Alpine terrain.

envec

- The F-SAR L-band InSAR data show high coherence and good performance for SWE retrieval also for a high snow accumulation event.
- The F-SAR C-band InSAR data show good results for retrieving snow accumulation of moderate intensity but are not suitable for intense snowfall due to low coherence and 2π phase ambiguity
- VV-polarized RP-InSAR data show slightly higher coherence than HH-polarized data, but the differences in retrieved SWE are insignificant.
- The studies with C-band (Sentinel-1) and L-band (PALSAR) InSAR data of Engadin confirm the findings regarding general preference of L-band vs. C-band and emphasize the need for continuous repeat-pass acquisitions throughout the snow cover period.
- Critical issues for InSAR SWE retrieval in mountains are the selection of reliable reference points for phase / SWE calibration, reduced sensitivity in forests, and topography-related correction for atmospheric effects. The use of S1 ETAD for correcting atmospheric phase delays in mountain regions will be studied.