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https://video-prediction.github.io/video_prediction/

Motivated by video prediction
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COMET is processing Sentinel-1 data over all 
volcanoes and straining regions

http://comet.nerc.ac.uk/COMET-LiCS-portal  

We have processed ~1.4 Million interferograms so far

http://comet.nerc.ac.uk/COMET-LiCS-portal
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We then carry out time series analysis of interferograms



Corrupt data files; critical missing bursts; low-coherency timespans (i.e. winter), … 

Can be tricky…

See Poster 310, 
Lazecky et al.



Tibet east-west 
velocities

Inverting network gives average velocity and time series

See Talk 4.03a, 
15.20, Wright et al.



We have a modified higher-res processing for volcanoes 

Nevados de Chillán Volcano

100m resolution 30m resolution

5 km



Time evolution is typically not linear 

Nevados de Chillán Volcano



Hekla, Iceland

Month A

M
on

th
B

 Short-temporal baseline interferograms

 One-year interferograms

June to 
September of 

year 1

June to 
September of 

year 2

…… ……
June to 

September of 
year 3

One-year
interferograms

Use coherence analysis for each volcano to optimise
interferogram network

• To deal with snow/high vegetation  

See Talk 1.04a 
17:30, Shen et al.



We developed algorithm based on independent component analysis to :
• Flag deformation that departs from background (rate or pattern)
• Detect changes with slow onset
• Work automatically

Unsupervised ML can be applied to the InSAR
time series directly

See Next Talk, 
Gaddes et al.

Cumulative 
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Our initial simulations used simple sources



We use a two-headed CNN for simultaneous location and 
classification of deformation

VGG16 (pretrained to recognize 
features in photos)



Our CNN trained on simulated data can classify and localize 
deformation in real images

Gaddes et al. (2021)

Network

Truth



Phase unwrapping CNN also be trained on these 
“simple” synthetic data Integer ambiguity gradients

Conv 3x3, ReLU,
Batch Normalization
MaxPool

Dropout

Conv 1 Output

Upsampling

Probability-based integration

See Poster 308, 
O’Grady et al.



To simulate time series of 
deformation we need to consider 
complexity of real plumbing 
systems 

Cashman et al. (2017)
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Analysis of temporal evolution of uplift episodes

• 3 examples of many

Lazufre Cerro Azul Long Valley
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All uplift episodes evolve logarithmically after a certain 
point in time



Can be explained with flow through and relaxation 
of poro-visco-elastic medium

See Poster 474, 
Novoa et al.



More general poro-visco-elastic finite element models

• Thermally-dependent 
viscosity structure

• Poro-elastic magma mush 
zone

• Injection of magma from 
below

Magma 
Mush



Vary model parameters within ranges constrained by 
petrology, geophysics, geochemistry, numerical models

See Poster 481, 
Bilsland et al.



Modify models to explain indiviual volcanoes E.g., Askja

Velocity 

See Poster 464, 
Sepúlveda et al.
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Training data: propagating dikes

We simulate multiple instances of 5 time steps of a propagating dike and add 
atmosphere and noise

We then train an LSTM network to extract deformation for steps 3 to 5 and predict 
deformation at steps 6 and 7 

Time
Long short-term memory 
(LSTM) network
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Truth
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Preliminary results from neural network

• Reasonable preliminary results. Transformer approach likely to do better
• Will expand simulated data to include all deformation processes at volcanoes
• Will also explore the addition of physics to network (physics-informed deep learning)



• We use ICA-based machine learning to automatically detect new deformation 
and changes in rate at volcanoes 

• Using deep learning we can locate and classify simple deformation sources and 
unwrap interferometric phase 

• Realistic simulations are key to forecasting deformation, which we are currently 
working on. Porous flow through mush seems to be a ubiquitous process. 

• Preliminary results for forecasting dike propagation show promise

Summary


	Slide Number 1
	Slide Number 2
	Slide Number 3
	COMET is processing Sentinel-1 data over all volcanoes and straining regions
	We then carry out time series analysis of interferograms
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Use coherence analysis for each volcano to optimise interferogram network
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Modify models to explain indiviual volcanoes E.g., Askja
	Slide Number 24
	Training data: propagating dikes
	Preliminary results from neural network
	Slide Number 27

