Large-scale velocity mapping over the Tianshan mountains

Qi Ou¹, John Elliott¹, Yasser Maghsoudi¹, Milan Lazecky¹, Chris Rollins^{2,1}, Tim Wright¹

¹ COMET, University of Leeds; ² GNS Science

Accommodates half of oblique convergence between India and Stable Eurasia

How is deformation accommodated?

InSAR helps identify sources of vertical motion

90 LiCS frames, Sentinel-1 2014-present

High coherence only in Kazakh Platform and fold-and-thrust belt in the south

Kazakh Platform

coherence

"Tianshan Strategy" LiCSAR with a twist

- Copernicus 30 m DEM
- Primary epoch in Aug. 2020
- 50 m-resolution IFGs
- Network
 - 5 forward nearest epoch +
 - 3, 6, 9, 12-month IFGs

		End Year											
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Jan												
S t	Feb												
	Mar												
а	Apr												
r	May					12			3			6	
t	Jun						12			3			
	Jul							12			3		
Υ	Aug					9			12			3	
е	Sep						9			12			
а	Oct							9			12		
r	Nov					6			9			12	
	Dec												

Quality of final dataset

Mosaic by constants

Plate-motion corrected LOS

Independent from GNSS

Uncertainties accumulate down track

ETAD?

673 GNSS velocities

From 24 studies ITRF2014 Fixed Eurasia

Cleaned by uncertainty Grouped by station Averaged by location

Dummy GNSS Sampled from interpolated GNSS and uncertainties

Calculated from Tarim rotation

Referenced LOS Velocities over the Tianshan Mountains

East and Vertical Velocities over the Tianshan Mountains

Ve and Vu in ITRF2014 **Fixed Eurasia**

East and Vertical Velocities over the Tianshan Mountains

Land Cover and Vertical Velocities over the Tianshan Mountains 48°N 46°N 44°N 42°N Herbaceous vegetation 40°N Bare / sparse vegetation Cropland Built-up 38°N -Snow & ice Permanent Water Bodies 50°N Vu, mm/yr

48°N -

46°N ·

44°N

42°N

40°N

38°N -

62°E

-5

5

66*E

68°E

70°E

72°E

74°E

76*E

78°E

80°E

82°E

84°E

86°E

88°E

90°E

92°E

Groundwater Extraction

100

0

200 300 400 km

84°E

86°E

82°E

90°E

88°E

92°E

Land Cover and Vertical Velocities over the Tianshan Mountains

62°E

66*E

68°E

70°E

72°E

74°E

76*E

78°E

80°E

80°E

78°E

82°E

84°E

62°E

70°E

66*E

72°E

74°E

76*

Land Cover and Vertical Velocities over the Tianshan Mountains

Glacial Isostatic Adjustment

92°E

90°E

88°E

2020 Mw 6.0 Jiashi Eqk

Vu, mm/yr

East and Vertical Velocities over the Tianshan Mountains

2017 Mw 6.3 Jinghe Eqk

28 km depth

2016 Mw 6.0 Hutubi Eqk

depth

East and Vertical Velocities over the Tianshan Mountains

Mine & Slow landslide

East and Vertical Velocities over the Tianshan Mountains

Tectonics? Ve, mm/yr Yes in Ve except..

East and Vertical Velocities over the Tianshan Mountains

East and Vertical Velocities over the Tianshan Mountains

Tectonics? Yes in Ve except..

Ve, mm/yı

Vu, mm/yr

-5

Yes in Vu if we avoid all that's not...

East and Vertical Velocities over the Tianshan Mountains

5

-5 5

Vu, mm/yr

Yes in Vu, if we avoid all that's not...

0.96±0.89 mm/yr !

Horizontal Strain from InSAR Ve and GNSS Vn

Median filtered with 100 km window

Horizontal velocity gradients

Strain rates (100 km)

Creeping Karkara Thrust Mackenzie et al, 2018

Gradients of InSAR Ve and GNSS Vn

Gradients of GNSS Ve and GNSS Vn

Gradients of InSAR Ve and GNSS Vn

Gradients of InSAR Ve and GNSS Vn

Gradients of InSAR Ve and GNSS Vn 60 km filter

Kashgar-Kalpin Thrusting System Moving East (5-7 mm/yr)

Distributed shear with some localisation

Distributed shear with some localisations

COMET Tien Shan Active Fault Database

Level 1: Scarp Level 2: Geomorphic Level 3: Seismic

King et al., coming soon!

Summary

Ve and Vu 1.6 million km² 500 m resolution

78°E

82°E

84°E

62°E

East and Vertical Velocities over the Tianshan Mountains

Summary

Ve and Vu 1.6 million km² 500 m resolution

Ve, mm/yr

Vu, mm/yr

90°E

88°E

92°E

Distributed EW extension with some localized shear on faults missing from **GEM Fault Database**

62°E

East and Vertical Velocities over the Tianshan Mountains

Summary

Ve and Vu 1.6 million km² 500 m resolution

Distributed EW extension with some localized shear on faults missing from **GEM Fault Database**

Vu, mm/yr

92°E

5

Ve, mm/yr

1 mm/yr tectonic uplift and much more!

East and Vertical Velocities over the Tianshan Mountains

Summary

Ve and Vu 1.6 million km² 500 m resolution

Ve, mm/yı

-5

5

Vu, mm/yr

92°E

Distributed EW extension with some localized shear on faults missing from **GEM Fault Database**

1 mm/yr tectonic uplift and much more!

Feeding into Global Earthquake Model.

⊠ q.ou@leeds.ac.uk

East and Vertical Uncertainties over the Tianshan Mountains

Quality Statistics

Coherence

Summer Coherence

Winter Coherence

Landcover

Permafrost Zonation Index

0

1

to Ve and Vu

Large-scale subsidence

Large-scale subsidence cannot be explained by permafrost

East and Vertical Velocities over the Tianshan Mountains

East and Vertical Velocities over the Tianshan Mountains

Eqk / salt?

Median filtered with 100 km window

Horizontal velocity gradients

Strain rates (100 km)

Strain rates (100 km)

Strain rates from GNSS

Strain rates (100 km)

Strain rates (200 km)

Strain rates (60 km)

Strain rates (200 km)

unmasked_clipped_filter_50km

unmasked_clipped_filter_100km

unmasked_clipped_filter_150km

unmasked_clipped_filter_200km

unmasked_clipped_filter_300km

Landcover 48°N 46°N -44°N 42°N · 40°N 38°N Permafrost 50°N 48°N 46°N 44°N -42°N -40°N 38°N

76°E

78°E

80°E

82°E

84°E

86°E

88°E

90°E

92°E

94°E

66°E

68°E

70°E

72°E

74°E

Shrubland Herbaceous vegetation Herbaceous Wetland Moss & lichen Bare / sparse vegetation Cropland Built-up Snow & ice Permanent Water Bodies Mixed closed forest type

| 1

Permafrost Zonation Index

0

Evergreen needleleaf closed forest Deciduous needleleaf closed forest Evergreen broadleaf closed forest Deciduous broadleaf closed forest Mixed closed forest type Unknown closed forest type Evergreen needleleaf open forest Deciduous needleleaf open forest Evergreen broadleaf open forest Deciduous broadleaf open forest Mixed open forest type Unknown open forest type

Fit InSAR LOS to GNSS LOS by a constant per track, assuming 2D GNSS has Vu=0, outlined circles are 3D GNSS

Independent InSAR Ve and interpolated GNSS Ve

Independent InSAR Ve and GNSS Ve

Independent InSAR Vu and GNSS Vu

Independent InSAR Vu and interpolated GNSS Vu

InSAR Ve after referenced to GNSS LOS by constant

InSAR Ve after referenced to GNSS LOS by constant

InSAR Vu after referenced to GNSS LOS by constant

InSAR Vu after referenced to GNSS LOS by constant

Permafrost Zonation Index Laragarary KAZAKHSTAN Zhorkazjan Kyzylorda

DESORI

ALL UNIT

And in case Rappin

Internal Drainage 0 K an enigoria Laragancy KAZAKHSTAN Zhokazan Laysen 000 Property of the Tabley Kyzylorda E-ITEV Shymit and UZBEKISTAN OTEGYZSTAN" Duyuan Pashki 0 0-00 Section Section O Karana OR 1 Türkmenabat[®] DE 8 OTATKISTAN AREKUM DESE Chort 00 TORKESTAN MOUNT TAINS Kapil KUH MOUNTAIN Peshawar Herat Simagar ALGHANIS TAN tel material Ranolpind Ξų 0

Mascon Visualization Tool

Colorado Center for Astrodynamics Research | CU Boulder

2004

3:02/3:33

Total Water Storage Anomaly, Northwestern China

agricultural areas and the desert to the south, where it evaporates,

Total water loss over two decades

Multiple Factors

22

0 4

leaving the region with a net loss of water.

ter Movements Around the World

At odds with the GNSS studies

Tianshan is uplifting at 0.72 ± 0.12 mm/yr = 0.39 mm/yr from unloading due to glacier melting, + 0.33 mm/yr from crustal thickening. Data from 2010-2016

InSAR Vu after referenced to GNSS LOS by constant

