A UNIVERSITY OF LEEDS

Towards a Universally Applicable Phase Bias Correction for ShortTerm Multi-Looked Interferograms: Challenges and Progress

Yasser Maghsoudi, Andrew Hooper, Tim Wright and Milan Lazecký

COMET, School of Earth and Environment, University of Leeds, LS2 9JT, UK Email: y.maghsoudi@leeds.ac.uk

- The velocity estimated by the multilooked short-term interferograms reveal a systematic signal (AKA "fading signal") (De Zan et al. 2018, Ansari et al. 2020)
- We previously developed an empirical mitigation strategy for the phase bias correction (Maghsoudi et al. 2022)

$$
\begin{gathered}
\Delta \varphi_{i, i+2}=\delta_{i, i+2}-\left(\delta_{i, i+1}+\delta_{i+1, i+2}\right)+\varepsilon \\
\Delta \varphi_{i, i+3}=\delta_{i, i+3}-\left(\delta_{i, i+1}+\delta_{i+1, i+2}+\delta_{i+2, i+3}\right)+\varepsilon
\end{gathered}
$$

- Assumption: The bias in an interferogram is linearly related to sum of biases in shorter interferograms spanning the same time

$$
\binom{\Delta \varphi_{i, i+2}}{\Delta \varphi_{i, i+3}}=\left(\begin{array}{llc}
a_{1}-1 & a_{1}-1 & 0 \\
a_{2}-1 & a_{2}-1 & a_{2}-1
\end{array}\right)\left(\begin{array}{c}
\delta_{i, i+1} \\
\delta_{i+1, i+2} \\
\delta_{i+2, i+3}
\end{array}\right)
$$

- Our mitigation strategy is immune to long-term coherence loss as it only relies on short-term interferograms for estimating the correction terms.
- Unlike phase linking approaches, our proposed strategy only requires the shortterm phases to solve for the bias correction through a single-step and computationally inexpensive least square inversion.
- But, the universality of the method needs further investigation

Before correction

- Loop closure time-series in various regions
- Ascending vs Descending
- Effect of filtering and multilooking
- Landcover investigation
- Polarization dependency
- Correlation with environmental proxies

Selected Frames

Loop Closure Time-series

Loop Closure Time-series

Time-series Cumulative Loop Closures

Cumulative Sum of Mean Loop Closures

Ascending vs. Descending

- Phase bias is a lesser concern in the estimation of east-west velocities but takes on greater importance when estimating vertical velocities.

- It is a common practice to reduce the phase noise using filtering.
- In COMET-LiCSAR system we generate both filtered and unfiltered interferograms
- It is important to know how much this filtering will increase the closure loops

Filtered: Goldstein filtering

Unfiltered (ML by 4 and 20)

Filtered vs. Unfiltered
UNIVERSITY OF LEEDS

Filtered vs. Unfiltered

cesa Cumulative Loop Closures and Landcovers

- Mean values of loop closures in different landcovers in Italy

Cesa Loop closures in different landcovers

- Mean values of loop closures in different forest classes in Italy

Cesa Loop closures in different landcovers

- Mean values of loop closures in different landcovers in Azores

Cesa Loop closures in different landcovers

- Mean values of loop closures in different forest classes in Azores

Loop closures time-series: VV vs. VH

Coherence image: VV vs. VH

Coherence (VV): 20181006_20181012

Coherence (VH): 20181006_20181012

A single loop closure in VV and VH

Loop closure (VH)

cesa Loop closures time-series: VV vs. VH

- Mean values of loop closures in VV and VH in Turkey frame:

- NDVI: a widely-used metric for quantifying the health and density of vegetation
- Obtained from Copernicus Global Land service (every 10 days using SPOT-VEGETATION Collection)

Mean values of loop closures and NDVI time-series in Turkey

- SWI: It shows water content in the soil profile
- Obtained from Copernicus Global Land service (Based on scatterometer satellite sensors and S-1 backscatter data)

Mean values of loop closures and SWI time-series in Turkey

Mean values of loop closures and SWI time-series in Italy

Loop closure time-series:

> The loop closure time-series has a seasonal trend showing itself with different peaks across different regions.
> The lowest values of closure phase was observed in Tien shan whereas the larges values were in Azores

Ascending vs Descending:

$>$ There was not a significant change of closure phase in ascending and descending which suggests that Phase bias is a lesser concern in the eastwest velocities but more importance when estimating vertical velocities.

Effect of filtering:

> Filtering (whether Goldstein or boxcar) can significantly increase the closure phase values.
$>$ The increase was larger in denser landcovers/larger precipitation

Land cover investigation:

> Cropland has larger phase bias than forest
$>$ Open forest has generally larger phase bias than closed forest

Polarization dependency:

> VH in general ended up with larger values of loop closures than VV

Environmental proxies:

$>$ A good match was observed between the vegetation growth (NDVI) and closure phase time-series
> The closure phase time-series agrees well with surface soil moisture (SWI)

Outlook

Thanks for Your Attention

- Investigate the effect of phase closure wrapping
- Investigate the minimum temporal baseline required to fulfil the "zero bias" assumption
- Account for small and large gaps in the time series, identifying possible limitations
- Investigate if the coefficients of the assumed linear system vary in time and/or space (either pixel by pixel or for different land covers)
- Investigate the necessity of including smoothing constraints to the system of equations
- Investigate the benefits of having more than three connections per epoch, and the upper limits in terms of temporal baselines and number of connections
- Investigate cases where a mixture of acquisition patterns (e.g., 6 and 12 days) exists in the time series
> Do a_{1} and a_{2} vary in time and space?
> Can a_{1} and a_{2} be estimated during the inversion?
> Can we account in the algorithm for complete loss of coherence e.g. when a crop is harvested?
> How to do the inversion when there is a gap in the time-series?
> Can we apply a smoothing temporal constraint of the bias in case of a gap?
> How to do the inversion when there are missing interferograms (lack of 3 nearest interferograms)?
> How to expand the idea when having larger than 3 connection per epoch?
> Can we split the time-series and run the inversion in subsets?

Future works

Future works

Future works

Future works

Future works

Future works

18 day $-\sum_{1}^{3} 6 d a y$

