EE-12 Proposal (LOI01-EE12-Irena-Hajnsek)

Ka-band Interferometric Radar for Cold Environments

Science Team

Irena Hajnsek	DLR, Microwaves and Radar Institute, DE ETH, Institute of Environmental Engineers, CH	<u>Irena.Hajnsek@dlr.de</u> Hajnsek@ifu.baug.ethz.ch	Lead Proposer
Guðfinna Th. Aðalgeirsdóttir	University of Iceland, Faculty of Earth Science, IS <u>Gua@hi.is</u>		Science Expert
Guido Grosse	Alfred-Wegener-Institute, Potsdam, DE <u>Guido.Grosse@awi.de</u>		Science Expert
Christian Haas	fred-Wegener-Institute, Bremerhaven, DE <u>Christian.Haas@awi.de</u>		Science Expert
Andreas Huth	Helmholtz Centre for Environmental Research, DE	ntal Research, DE <u>Andreas.Huth@ufz.de</u>	
Andreas Kääb	University of Oslo, NO	A.M.Kaab@geo.uio.no	Science Expert
Gerhard Krieger	DLR, Microwaves and Radar Institute, DE	<u>Gerhard.Krieger@dlr.de</u>	System Design/ Instrument
Benoit Montpetit	National Wildlife Research Center, Environment and Climate Change Canada, CA <u>Benoit.Montpetit2@canada.ca</u>		Science Expert
Helmut Rott	ENVEO IT, Innsbruck, AT	Helmut.Rott@uibk.ac.at	Science Expert
Tazio Strozzi	GAMMA Remote Sensing, CH	<u>Strozzi@gamma-rs.ch</u>	Science Expert
Sebastian Westermann	University of Oslo, NO	Sebastian.Westermann@geo.uio.no	Science Expert
Mariantonietta Zonno	DLR, Microwaves and Radar Institute, DE	Mariantonietta.Zonno@dlr.de	Mission Concept

Industry Team: AIRBUS and OHB

irena.hajnsek@dlr.de / Fringe 2023

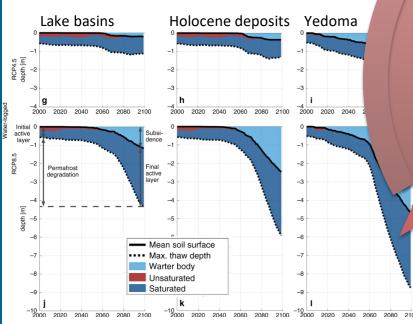
Primary Mission Objectives ...

- Permafrost landscape
 topography and its dynamic
 evolution for studying active
 layer trends across large regions
 as well as thermokarst, major
 mass movements, and coastal
 erosion at local scale.
- Snow topographic changes to observe the snow mass accumulation for accurately quantifying & predicting snowmelt runoff and water availability.
- Glaciers, ice caps, ice-clad volcanos to observe their mass balance and its temporal change & to assess their dynamic response to changing boundary conditions.

1. Measure gradual but widespread regional topographic changes using repeat elevations with high vertical accuracy over multi-year periods.

2. Measure abrupt strong local topographic changes using repeat elevations with seasonal and high spatial resolution. Abrupt and strong local changes through thermokarst and erosion

> Gradual landscape scale subsidence through ground ice loss

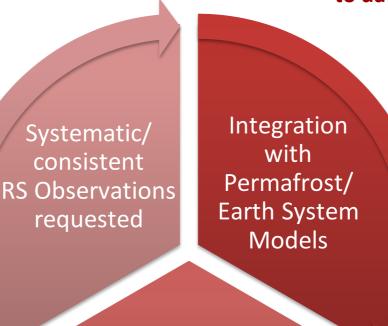

4. Measure **canopy height variability** for the estimation of vegetation structure, productivity and change

 Measure snow thickness distribution as key driver of permafrost distribution and thermal state.

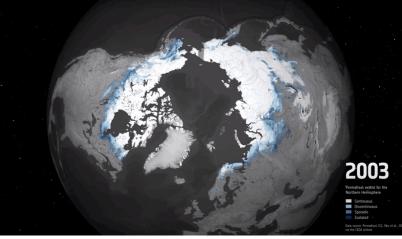
Science Rationale...

Dramatic changes in Arctic permafrost are emerging and are projected to increase – with strong impacts on climate, ecosystems, the Arctic economy, and local societies. Permafrost is a GCOS/WMO ECV!

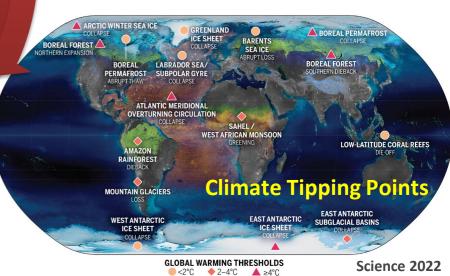
Predictions...

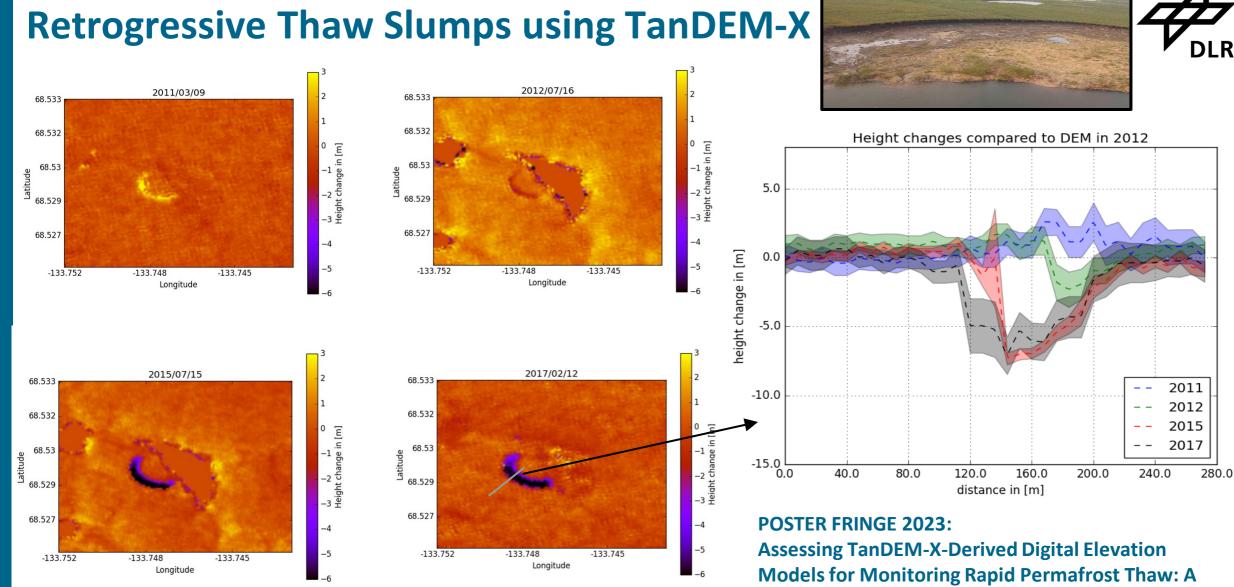


Drastic permafrost degradation


Nature Communications 2020

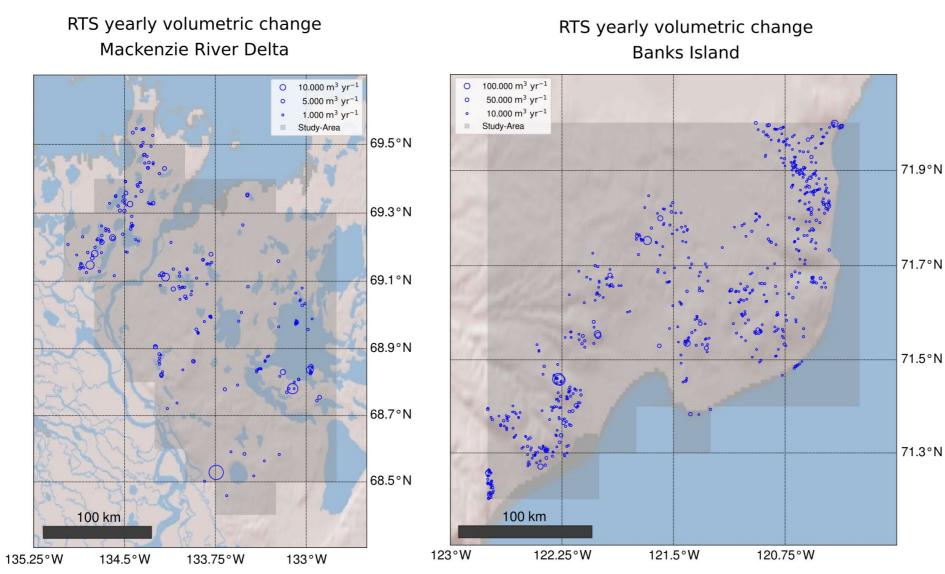
Observations today...


No dedicated permafrost satellite mission targeting the 22% of northern hemisphere land surface with permafrost to date!



Climate Impact/ Societal Implications/ Habitat Changes

Permafrost is a subsurface phenomenon. Reliable detection and understanding of changes requires an **integrated observing system with remotely sensed boundary conditions** as a key input.

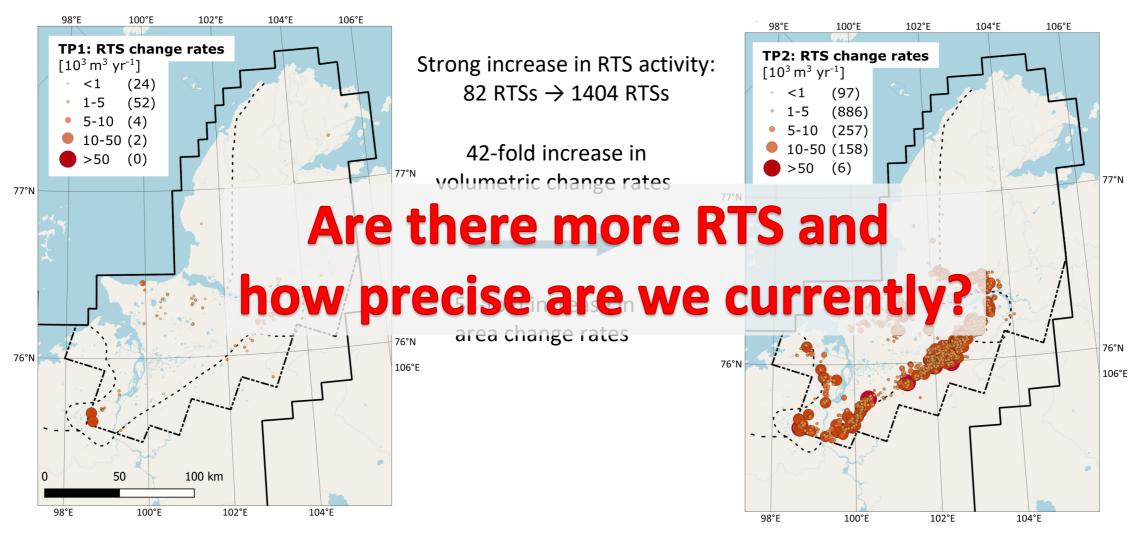

P. Bernhard, S. Zwieback, S. Leinss and I. Hajnsek, "Mapping Retrogressive Thaw Slumps Using Single-Pass TanDEM-X Observations," in *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, vol. 13, pp. 3263-3280, 2020, doi: 10.1109/JSTARS.2020.3000648.

DEM Differencing over an (RTS)

Models for Monitoring Rapid Permafrost Case Study in the Mackenzie River Delta <u>Kathrin Maier et al.</u>

From Height Differences to Volumetric Changes

Using a power law relation developed for Landslides


Bernhard, P., Zwieback, S., Bergner, N., and Hajnsek, I.: Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic, The Cryosphere, 16, 1–15, https://doi.org/10.5194/tc-16-1-2022, 2022.

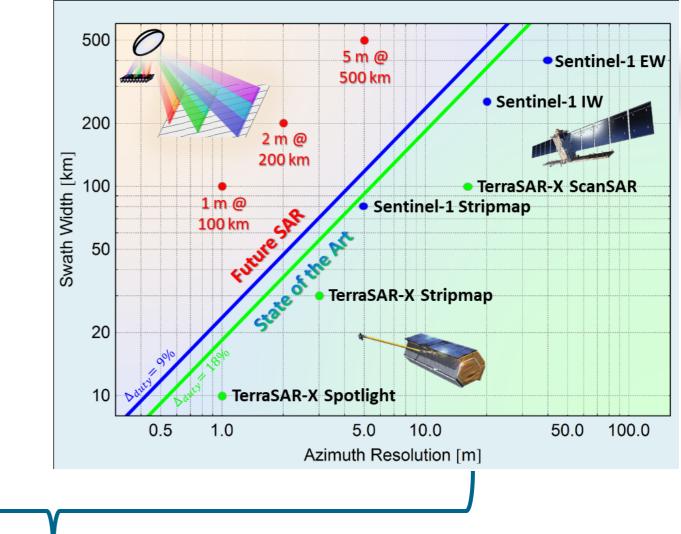
Strong increase due to climate warming!

TP1: 2010/11/12 to 2016/17

TP2: 2018/19 to 2020/21

Bernhard, P., Zwieback, S., and Hajnsek, I.: Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula, The Cryosphere, 16, 2819–2835, https://doi.org/10.5194/tc-16-2819-2022

Science Requirements and SRL

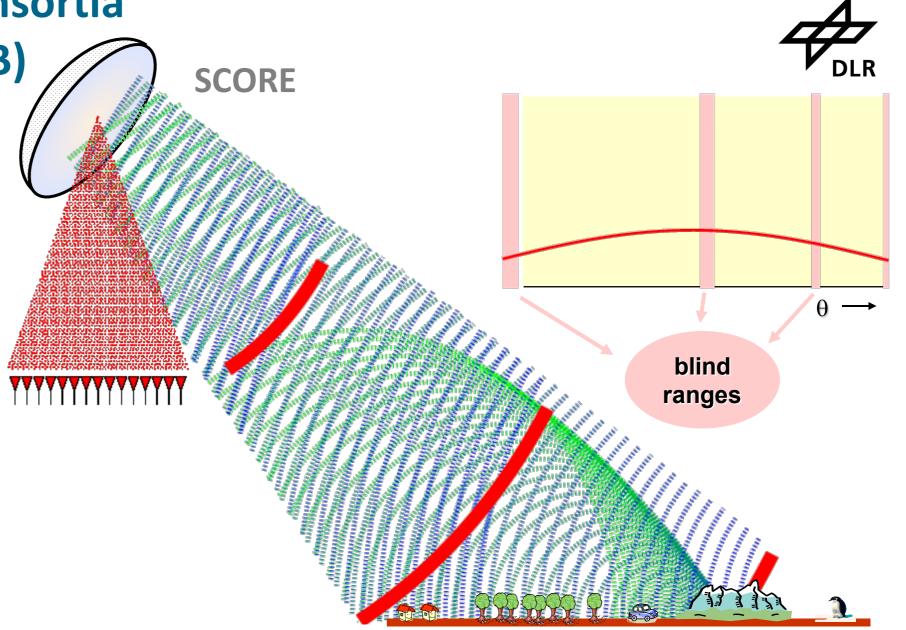


Parameter Link to Objective Nr.	Spatial Sampling	Temporal Sampling	Coverage	Accuracy (relative std. dev.)	SRL	Comments	
Primary Parameter							
Topography change in permafrost regions lowland and mountain (Gradual Thaw)	100 m (T) 50 m (G)	1 seasonal (T) 1 monthly (G) (summer)	Regional scale – entire permafrost regions	0.2 m (T) 0.1 m (G) (vertical)	4	Relative change in elevation	
Topography changes in local permafrost areas (Abrupt/Rapid Thaw)	20 m (T) 10 m (G)	1 monthly (T) bi-monthly (G) (summer)	Local scale, regions with high to moderately high ice content and the Arctic coastline	0.5 m (T) 0.2 m (G) (vertical)	4	Selected areas, relative change in elevation	
Snow height change	100 m (T) 30 m (G)	1 month (T) 1 week (G) (winter)	Snow covered regions during winter, gridded sampling	0.3 m (T) 0.1 m (G) (vertical)	4	Relative change in elevation / compact mode	
Surface elevation change (SEC) glaciers & ice caps	50 m (T) 30 m (G)	3 yr (T) ~1 yr (G)	Mountains and mid- to high-latitude lowlands, ice caps, outlet glaciers	1.0 m (T) 0.3 m (G) (vertical)	4	Relative change in elevation	
Secondary Parameter							
Vegetation structure	100 m (T) 50 m (G)	2 yr (T) 1 yr (G)	Entire permafrost and tropical forest sampling	horizontal and vertical structure	2-3	Relative change in elevation and structure from interferometric phase & coherence, experimental	
Sea ice topography/roughness and fresh water topography	20 m (T) 10 m (G)	1 month (T) 7 days (G) (winter)	Artic sea ice, gridded sampling	0.5 m (T) 0.2 m (G) (vertical)	3	Relative change in elevation, experimental	
Geohazards (landslides, rockfalls, mining, landfill, volcanic activities, seismic events)	100 m (T) 50 m (G)	½ yr (T) 10 days (G)*	Cold environment, sampling on demand	2 m (T) 0.3 m (G) (vertical)	4	Relative change in elevation, *depending on activity of phenomena	
Topography of land surfaces	100 m (T) 50 m (G)	5 yr (T) 1 yr (G)	All land surfaces	5 m (T) 0.5 m (G) (vertical)	4	Basic DEM update	

Mission Requirements

Basic Requirements:

- Swath width: min. 50 km (preferable more)
- Spatial resolution: ~1.5 m
- **Repeat time**: as frequent as possible (preferable weekly)
- Imaging mode: single-pass SAR-Interferometry

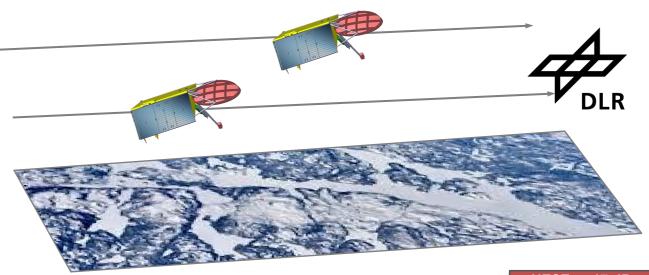


Challenging requirements with conventional imaging modes in Ka-band

Two Industry Consortia (AIRBUS and OHB)

Discussed Instrument Concepts:

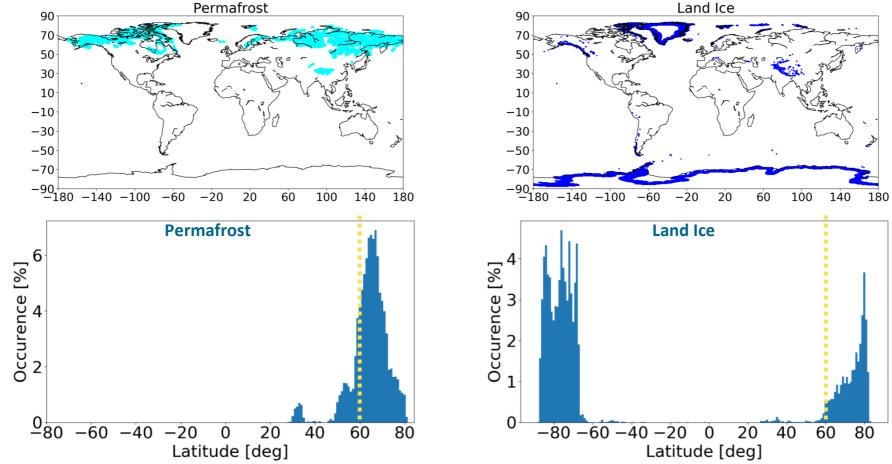
- Score-on-receive (SCORE)
- Staggered SAR
- Frequency SCAN for Time-of-Echo Compression (f-STEC)
- Photonic Beamforming



Mission Characteristics

- Mission for cold environment (Arctic and high alpine)
- Single-Pass Interferometer in Ka-band (two satellites)
- Single HoA (30 m) and dual HoA (15 m)
 Polarimetric capabilities (dual/quad pol)
 SAR specification:
 - Spatial high resolution (tbd ~1.5 m)
 - Decimetric height accuracies (~10 cm)
 - Global DEM over the mission time

Products:


- Δ DEMs
- Vegetation topography and structure
- Density/Grain size of snow (polarimetric scattering)
- Penetration bias of snow and ice

Performance Analysis (dual baseline)				NESZ = -17 dB Slope = 0% dp = 0.5 m	
Parameter Link to Objective Nr.	Spatial Sampling	Accuracy (std. dev.)	Brg = 150 MHz <u>HOA = 15 m</u>		
Primary			Wet Snow	Dry Snow	
Topography change in permafrost regions	20 m (T) 10 m (G)	0.5 m (T) 0.2 m (G)	0.22 0.46	0.12 0.25	
Snow height change (SEC)	100 m (T) 30 m (G)	0.3 m (T) 0.1 m (G)	0.04 0.15	0.02 0.08	
Surface elevation change (SEC) glaciers & ice caps	50 x 50 (T) 30 x 30 (G)	1.0 m (T) 0.3 m (G)	0.09 0.15	0.05 0.08	
Secondary					
Sea ice topography/ roughness and fresh wáter topography	20 x 20 (T) 10 x 10 (G)	0.5 m (T) 0.2 m (G)	0.22 0.46	0.12 0.25	
Geohazards (landslides, rockfalls, mining, landfill, volcanic activities, seismic events)	100 m (T) 50 m (G)	2 m (T) 0.3 m (G)	Bare so	il: 0.03 0.06	
Topography of land surfaces	100 m (T) 50 m (G)	5 m (T) 0.5 m (G)		0.00	

From Application to Mission Requirements

- Temporal sampling:
 - I month (G) over permafrost regions (topography change): driving requirement
 - 1 week (G) over snow regions (topography change)
 - I year (G) global surface acquisition (for global DEM change, glaciers and ice caps): no criticalities
- Rol Masks and latitudes of interest

Mission Concept, Phases and Orbit Selection

Key Mission Parameters

- Orbit Height = 519 km (reference orbit)
- Swath Width = 50 km
- Incident Angle = 30° (mid swath)
- NESZ \leq 17 dB
- 2D resolution $\leq 10 \text{ m}^2$
- HoA \sim 15 m

Mission Phase 1: Permafrost (May - October)

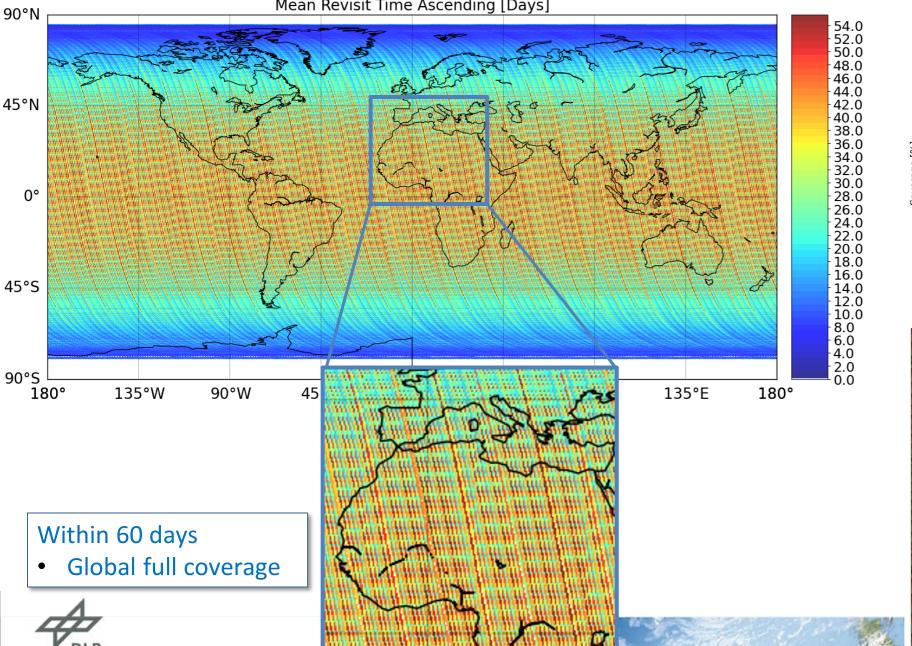
- 29 days repeat@ 519 km (518.7 km), n. revs = 439
- track separation at the equator: 91 km
- full coverage with 50 km swath at 56.78° lat
- 1st month: Inc. angle (27.67° 32.32°)
- 2nd month: Inc. angle (32° 36.3°)
- Swath Overlap: 3.62 km

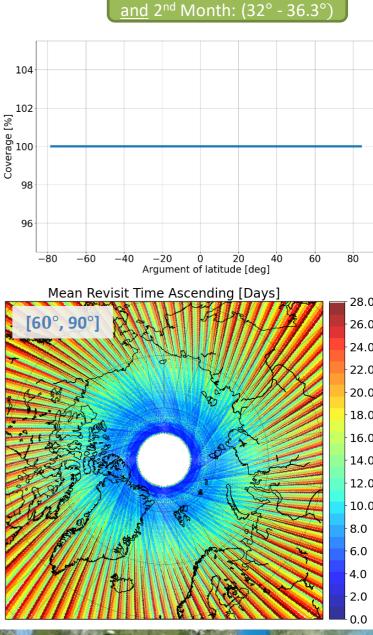
Mission Phase 2: Snow (November - April)

• 7 days repeat @ 517 km, n. revs = 106

Mission Phase 3: Global DEM

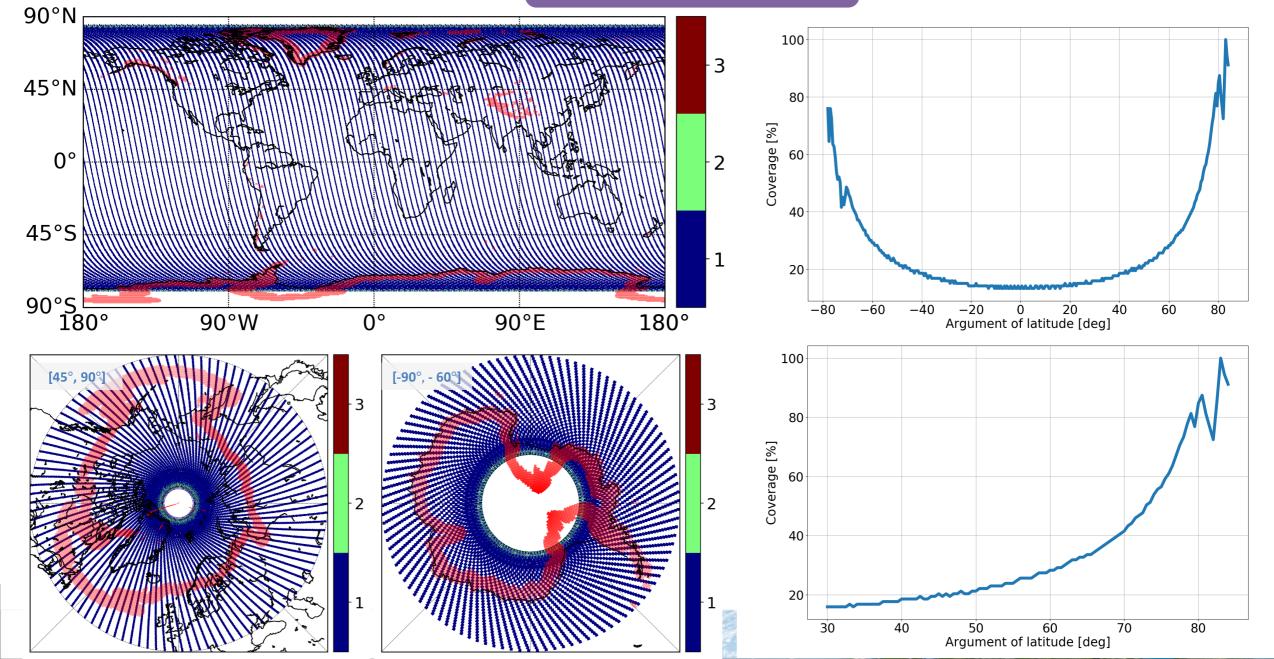
- Same orbit as for phase 1, or
- Longer Orbit repeat


Mission Phase 1: Permafrost (May - October)


- 65 days repeat@ 519 km (518.5 km), n. revs = 984
 - track separation at the equator: 41 km
 - Inc. angle (27.67° 32.32°)

Mission Phase 1: Permafrost (May - October) - 29-Days Orbit Mean Revisit Time Ascending [Days]

Swath Width = 50 km


1st Month: (27.7° - 32.3°)

Mission Phase 2

7-days orbit: ascending only Inc. Angle: (27.7° - 32.3°)

Programmatic Elements SK a D/

SKADI addresses

- Three Key Scientific Challenges of ESA's Living Planet Programme for the Cryosphere, Solid Earth and Land Surface.
- **Societal Issues** of ESA's Living Planet Programme (climate, biodiversity, food and water, natural energy, hazards).

Uniqueness, Complementarity and Synergies

- Small penetration of very few cm in the media of interest (ice, snow, permafrost and vegetation).
- Synergies/complementarities between a Ka-band mission and other existing missions in ESA's Copernicus and Earth Explorer programs (e.g., Sentinel-1/2/3, Biomass, CryoSat, CRISTAL, Rose-L, Harmony,...)
 - differential single-pass measurements
 - sensitivity to very small structures

Need, Usefulness, Excellence

• SKADI will collect unique data that are urgently needed to answer pressing science and societal questions, supported by highly qualified experts. (ECVs, Earth system tipping elements)

Feasibility and Level of Maturity

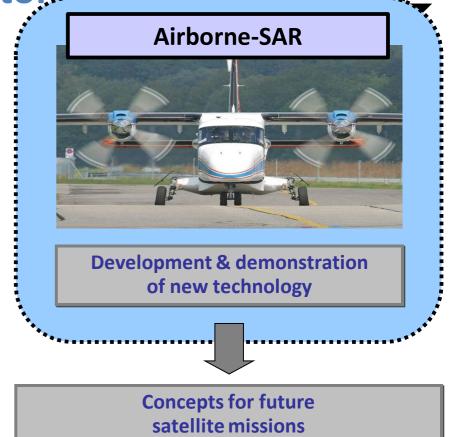
- Benefits from ESA's strong heritage and innovative programmatic element due to its many science and mission concepts as well as instrument design studies.
- Instrument design: Strong heritage and innovative implementation concepts (TRL 5-6 at end of phase B1).

Recommendation and Next Steps

- There is a need of more studies related to innovative imaging techniques/frequencies!
- Lack of Ka-band data support of Ka-band airborne campaigns
- Ground based sensors: Evaluation of WBSCAT (Gamma Remote Sensing) acquired data over a snow season.
- Proposal submission to the ESA's EE-12 call.

Outlook DLR's Ka-Band PolInSAR Demonstrator

Goals:


- Add-on for the DBFSAR/F-SAR System in form of a Ka-band segment with multi-baseline PolInSAR capabilities
- Research of Ka-Band applications and techniques (polarimetric and interferometric)
- Operation together with X- and L-band segments of F-SAR

Radar specification:

- 35.75 GHz
- 500 MHz bandwidth
- +59 dBm transmit power (typ.)
- PRF up to 15 kHz
- 8 simultaneous receive channels
- +2km swath width expected

Antenna specification:

- Dual-polar transmit and receive antennas (single-polar in 1st generation) in slotted waveguide technology
- 4 across-track antenna positions (3 baselines)
- Possibility for ping-pong (full-baseline) modes
- 1 along-track baseline as future option

EE-12 Proposal (LOI01-EE12-Irena-Hajnsek)

Ka-band Interferometric Radar for Cold Environments

Science Team

Irena Hajnsek	DLR, Microwaves and Radar Institute, DE ETH, Institute of Environmental Engineers, CH	<u>Irena.Hajnsek@dlr.de</u> Hajnsek@ifu.baug.ethz.ch	Lead Proposer
Guðfinna Th. Aðalgeirsdóttir	University of Iceland, Faculty of Earth Science, IS <u>Gua@hi.is</u>		Science Expert
Guido Grosse	Alfred-Wegener-Institute, Potsdam, DE <u>Guido.Grosse@awi.de</u>		Science Expert
Christian Haas	fred-Wegener-Institute, Bremerhaven, DE <u>Christian.Haas@awi.de</u>		Science Expert
Andreas Huth	Helmholtz Centre for Environmental Research, DE	ental Research, DE <u>Andreas.Huth@ufz.de</u>	
Andreas Kääb	University of Oslo, NO	A.M.Kaab@geo.uio.no	Science Expert
Gerhard Krieger	DLR, Microwaves and Radar Institute, DE	<u>Gerhard.Krieger@dlr.de</u>	System Design/ Instrument
Benoit Montpetit	National Wildlife Research Center, Environment and Climate Change Canada, CA <u>Benoit.Montpetit2@canada.ca</u>		Science Expert
Helmut Rott	ENVEO IT, Innsbruck, AT	Helmut.Rott@uibk.ac.at	Science Expert
Tazio Strozzi	GAMMA Remote Sensing, CH	<u>Strozzi@gamma-rs.ch</u>	Science Expert
Sebastian Westermann	University of Oslo, NO	Sebastian.Westermann@geo.uio.no	Science Expert
Mariantonietta Zonno	DLR, Microwaves and Radar Institute, DE	Mariantonietta.Zonno@dlr.de	Mission Concept

Industry Team: AIRBUS and OHB

irena.hajnsek@dlr.de / Fringe 2023