

InSAR Tropospheric Delay Modeling Based on Its Spatiotemporal Characteristics

Jihong Liu^{1, 2}, Sigurjón Jónsson¹, Jun Hu², Roland Burgmann³

¹ King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
 ² Central South University, Changsha, China
 ³ University of California, Berkeley, CA, USA

FRINGE 2023 University of Leeds, UK | 11 - 15 September 2023

Background

> Signals contained in InSAR interferograms

•

....

Methods to correct InSAR atmospheric delays

1、 Independent datasets (e.g., weather models, GPS.....)

Interpolation of glabol atmopheric model (e.g., GACOS, ICAMS)

Even worse due to the inconsistence of resolution

Methods to correct InSAR atmospheric delays

2、 Data-driven methods (e.g., spatial or temporal correlation)

DEM-correlated stratified delay

Limitations

Temporally random turbulent delay

 ${\pmb \phi}_{_{\mathsf{i+1}}}$

××

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 e.g., Tymofyeyeva & Fialko (2015)

 ϕ_{i}

20

time

 ϕ_{i-1}

9 10 11 12 13 14 15 16

 ϕ_{i-N}

0 1 2 3 4

5

-OS displacements (mm)

30 20

Each error components are <u>corrected independently</u>, influenced by the existence of other errors
There is no <u>mathematically models</u> for the atmospheric delays based only on InSAR data

> **DetrendInSAR**: to decrease both the trend and DEM-related components in InSAR time series

> Obtain L_m and b_{mk} at pixel (*i*,*j*) on time $t_n - -$ (3) based on the a-priori information of temporal deformation

> Obtain L_m and b_{mk} at pixel (*i*,*j*) on time $t_n - (4)$ based on the a-priori information of known-defo pixels

Similar formula of the constraint:

$$\begin{bmatrix} 0 = 1 \cdot D_{(i,j,t_n)} & \text{OR} & \text{Value} = 1 \cdot D_{(i,j,t_n)} \end{bmatrix}$$

> Combining the a-priori information at all pixel and all time series

(1) based on the a-priori information of trend component

$$\Psi_{(i+x,j+y,t_n)} = D_{(i+x,j+y,t_n)} + [1,x,y] \cdot [R_{(i,j,t_n)}, a_{(i,j,t_n),1}, a_{(i,j,t_n),2}]^T + S_{(i+x,j+y,t_n)}$$

(2) based on the a-priori information of **DEM-related component**

$$\Psi_{(i+x^*,j+y^*,t_n)} = D_{(i+x^*,j+y^*,t_n)} + R_{(i+x^*,j+y^*,t_n)} + \left[1,\Delta h_{(x^*,y^*)}\right] \cdot \left[S_{(i,j,t_n)}, b_{(i,j,t_n)}\right]^T$$

 $0 = C \cdot X$

(3) based on the a-priori information of temporal deformation

(4) based on the a-priori information of known-defo pixels $\left(0=1\cdot D_{(i,j,t_n)} \text{ OR } D_0=1\cdot D_{(i,j,t_n)}\right)$

L = B * X L =

Simulation Data

Benchmark methods

 φ_{i+n}

FitFilter: Fit a ramp and a DEM-correlated component, followed by a temporal filter

$$p = a_0 + \underbrace{a_1 \cdot x + a_2 \cdot y}_{ramp} + \underbrace{k \cdot h}_{DEM-correlated}$$

CSS: Common Scene Stacking

$$a_{i} = \lim_{N \to \infty} \frac{1}{2N} \sum_{j=1}^{N} \Delta \phi_{i(i-j)} - \Delta \phi_{(i+j)i}$$

Simulated Comparison

The 2021 Mw7.4 Maduo earthquake

The 2021 Mw7.4 Maduo earthquake

Comparison of different methods

The 2021 Mw7.4 Maduo earthquake

Comparison with 160-day GNSS

RMSEs by comparing with GNSS (mm)

Method	Asc.	Des.
GACOS	11.1	8.7
ICAMS	10.9	8.0
FitFilter	6.7	6.8
CSS	3.9	4.5
DetrendInSAR	3.1	3.6

Displacement example of an M5.4 post-earthquake

The 2023 Türkiye earthquake sequence

From <u>Kang Wang</u> at UC, Berkeley

The water-level decrease-induced rebound of Dead Sea

From <u>CDI</u>, KAUST

open DetrendInSAR code

> Input: displacement time series, Date list, dem

> Key parameters: "defo=0" region, window size, weight

> Output: corrected data

> Advantages

➢ Simple input

> Feasiblity to adjust parameters

DetrendInSAR 10.5281/zenodo.8241402

> Why not have a try

Conclusions

✤ We propose a new InSAR time-series method (**DetrendInSAR**) for reducing atmospheric delays;

- Simulation and real data analysis over the 2021 Maduo earthquake validate DetrendInSAR method;
- DetrendInSAR open code
 - Not the best but worth a try
 - □ InSAR atmospheric delays correction is still **a challenging topic**
- Welcome to "4.01c The 2023 Türkiye earthquake sequence"
 - Off-fault damage of the 2023 Kahramanmaraş earthquakes estimated from <u>3D displacements</u> of satellite radar images

DetrendInSAR 10.5281/zenodo.8241402

Thanks for your attention! Welcome comments and suggestions.....