A Deep Learning Framework for Regularly Monitoring the Amazon Forest with Sentinel-1 InSAR data: Seasonal Challenges and Insights

<u>Ricardo Dal Molin Jr.^{1,2}, Paola Rizzoli¹, Laetitia Thirion-Lefevre², and Régis Guinvarc'h²</u>

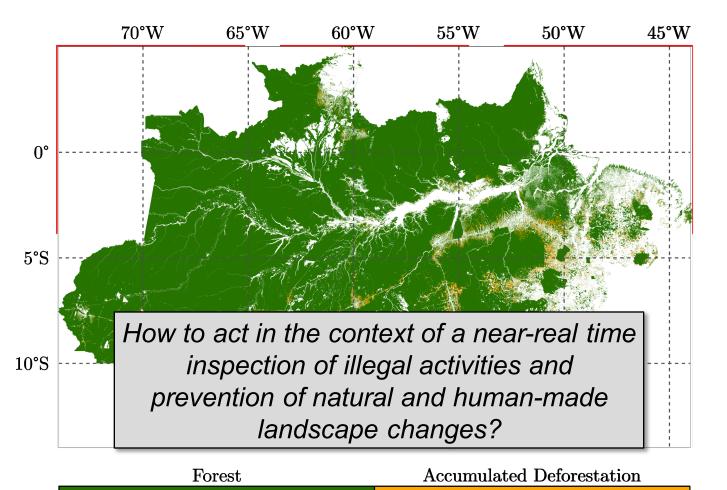
¹Microwaves and Radar Institute, German Aerospace Center (DLR), Germany

²SONDRA, CentraleSupélec, Université Paris-Saclay, France

Problem Overview and Motivation

- Investigating land cover change patterns in forest ecosystems is of utmost importance in the context of environmental policy-making
- Monitoring systems rely on optical remote sensing data in areas whose mean annual cloud cover ≥ 70%
- Some maps might only be updated with reliability once a year, during the dry season
- We investigate the potential of Sentinel-1 IW to regularly monitor these environments

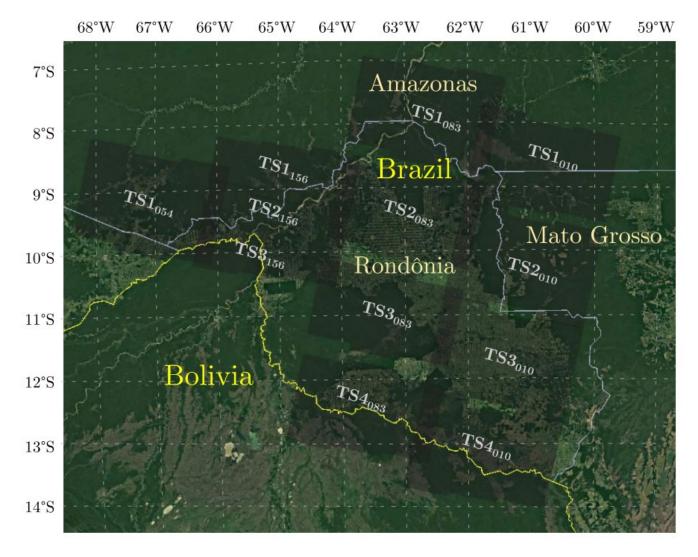
PRODES - Native vegetation supression between 2008 and 2021



CentraleSupélec

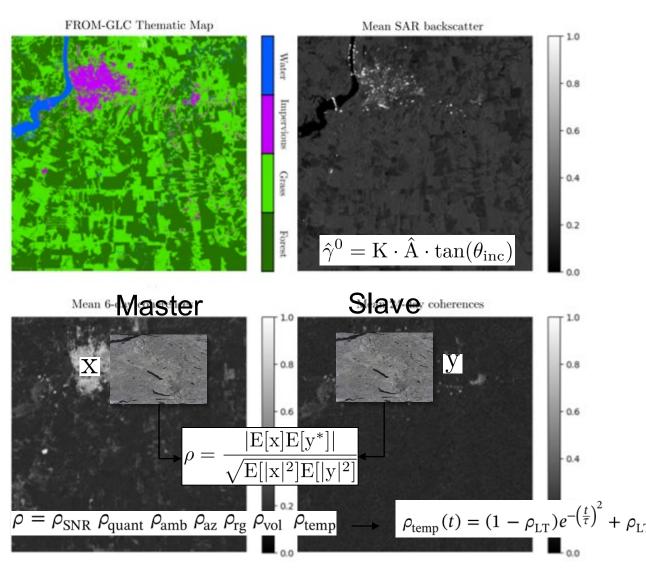
Problem Overview and Motivation

- We initially define our region of interest over the Brazilian state of Rondonia (ca. 238,000 km²)
- This area is one of the most deforested and studied places in the Amazon basin, and during 2019 was focus of a special campaign with a 6 days repeat-pass coverage
- Thus, we selected 12 scenes, each composed of time series covering only 24 days to regularly map land cover classes of interest at 50 m resolution with single VV polarization



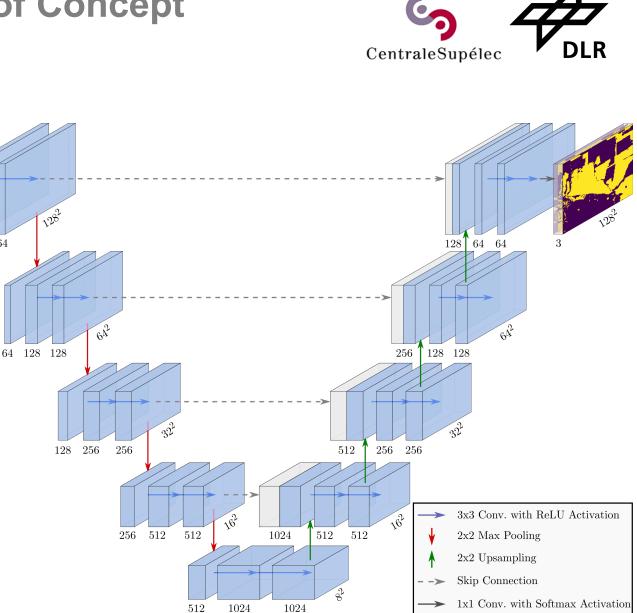
Problem Overview and Motivation

- As external reference, we chose the FROM-GLC 2017, a thematic map containing 10 land cover classes with a resolution of 10 m
- First feature of interest is the SAR backscatter, here denoted by the gamma naught coefficient
- Next, the interferometric coherence is defined as the amplitude of the complex correlation between a pair of images
- The idea is also to exploit how different land cover classes decorrelate over time

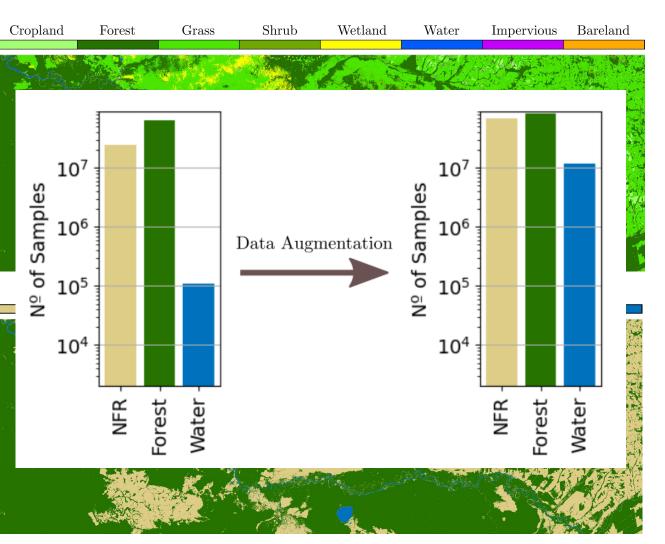


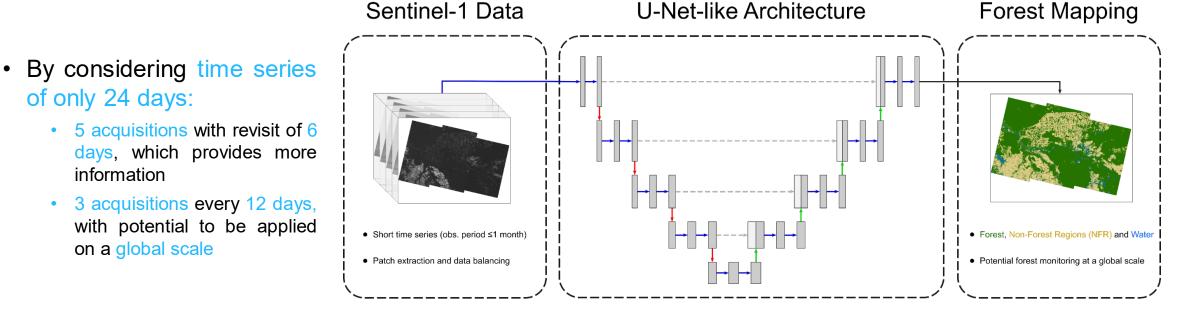
64 64

- <u>U-Net</u>: CNN originally proposed for biomedical binary segmentation problems with a nearly symmetric encoder-decoder nature → we build our own model adapted to land cover
- Advantages:
 - few input features \rightarrow lots of learnable parameters
 - convolutional kernels account for spatial context
 - full resolution of the image is preserved
- Limitations:
 - requires a considerable amount of training data
 - patch-based nature \rightarrow difficult class balancing
 - optimal fine-tuning of the network might be challenging



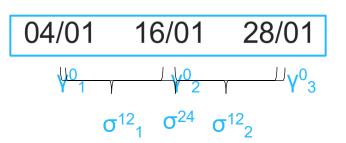
- When looking at a landscape in the Amazon region, it becomes clear that there is a high class imbalance
- Due to this constraint, we simplify our classification problem to 3 classes of environmental interest
- Even so, the problem persists in a way that could bias the predictions towards the majority classes
- To this end, we virtually augment patches containing mostly water with flipping and rotation operations





In this case, an example of backscatter and interferometric coherence input features would be:

- Mean of the 3 backscatter γ^0 images
- Mean between the pair of 12-day coherences
- The 24-day long-term coherence



- Experimental setup with different sets of input features to evaluate the following:
- 1. Can the network learn local spatial information and outperform state-of-the-art shallow learners?
- 2. Is the CNN able to learn the temporal decorrelation trend by itself by simply relying on stacks of interferometric coherences?
- 3. Is it viable to consider a minimum revisit time of 12 days (global cover)?

Approach	#	Backscatter		Coh. Stacks _[days]			Exp. Model		Geom.	
		γ^0_{avg}	Textures	ρ_6	ρ_{12}	$ ho_{18}$	ρ_{24}	τ	$ ho_{LT}$	θ_{inc}
RF [1]	Ι	٠	-	*	*	*	*	•	•	•
RF [2]	II	•	•	*	*	*	*	•	•	•
CNN	III	•	-	*	*	*	*	•	•	•
CNN	IV	•	-	•	•	•	•	-	-	•
CNN	V	•	-	-	٠	-	٠	-	-	•

 Sica, F.; Pulella, A.; Nannini, M.; Pinheiro, M.; Rizzoli, P. Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-Series. Remote Sens. Environ. 2019, 232.
 Pulella, A.; Aragão Santos, R.; Sica, F.; Posovszky, P.; Rizzoli, P. Multi-Temporal Sentinel-1 Backscatter and Coherence for Rainforest Mapping. Remote Sens. 2020, 12, 847.

Mean

77.17%

91.41%

80.85%

92.38%

87.35%

95.02%

87.94%

95.26%

85.90%

93.97%

Water

61.85%

98.93%

69.56%

99.18%

79.99%

99.55%

80.91%

99.58%

80.52%

99.57%

579,201

Overall

87.20%

87.11%

88.62%

88.57%

92.50%

92.53%

92.85%

92.89%

90.69%

90.96%

55,361,536

RF [1]

RF [2]

- Best results by using solely the coherence stacks to describe the temporal decorrelation trends
- With a min. revisit time of $12 \text{ days} \rightarrow \text{global}$ potential

NFR

78.41%

87.44%

80.81%

88.86%

87.15%

92.64%

87.73%

92.99%

83.21%

91.07%

16,157,783

Classes

Forest

91.26%

87.85%

92.17%

89.10%

94.92%

92.87%

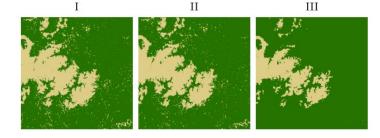
95.18%

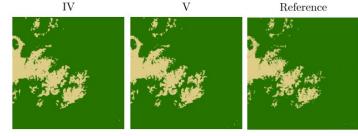
93.21%

93.97%

91.28%

38,624,552





CNN - Baseline Settings

CNN - Coherences 6, 12, 18, 24 days

CNN - Coherences 12, 24 days

Global cover

#

Π

III

IV

V

9

Metrics

F₁-Score

Accuracy

F₁-Score

Accuracy

F₁-Score

Accuracy

F₁-Score

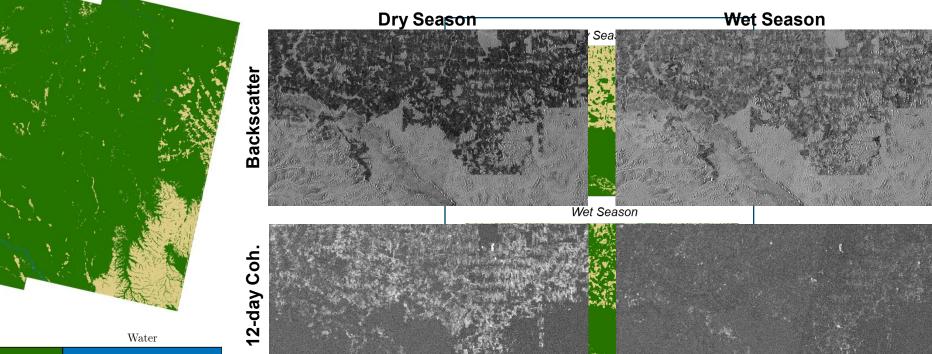
Accuracy

F₁-Score

Accuracy

N° of samples

- Accurate classification @50m when compared with the ground truth in the Brazilian state of Rondonia, with the goal of moving towards operational large-scale forest monitoring
- Challenge of dealing with seasonal effects, for instance:

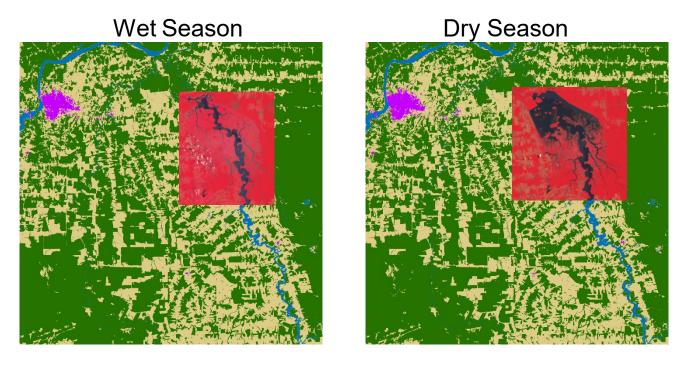


CNN Prediction

Forest

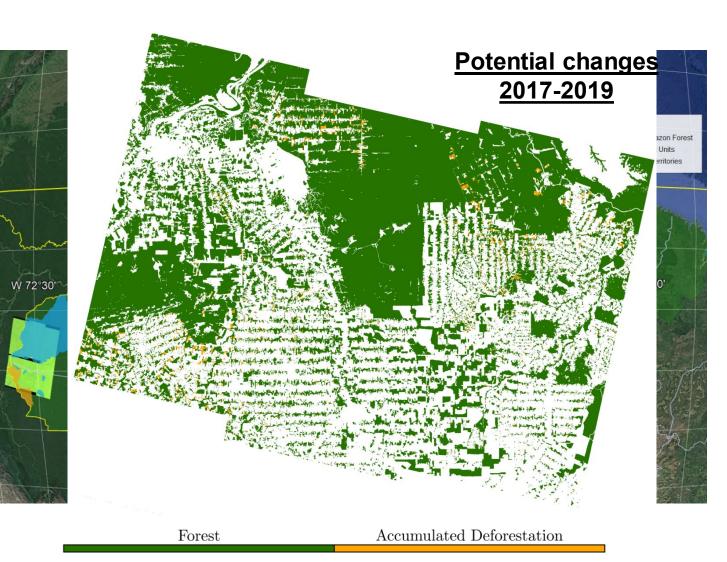
Non-Forested Region (NFR)

- We are currently pushing the resolution of the Sentinel-1 data to a res. @20m, also with dual VV + VH polarization, to further improve the description of LCC
- Challenge of usually having a single ground truth per year, typically acquired during the dry season, so we must determine what comes from actual changes on ground
- How to better validate our results, giving the lack of reliability or frequency in which the ground truths are available in this region

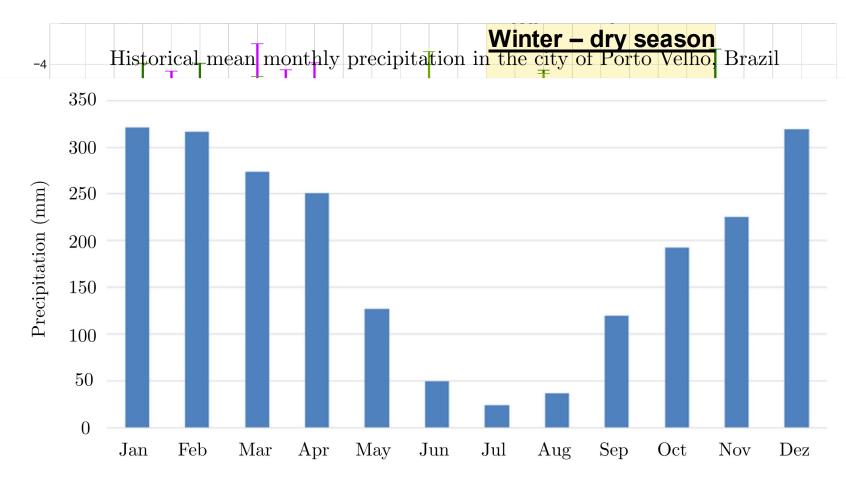


Non-Forested Region (NFR)	Forest	Water	Impervious

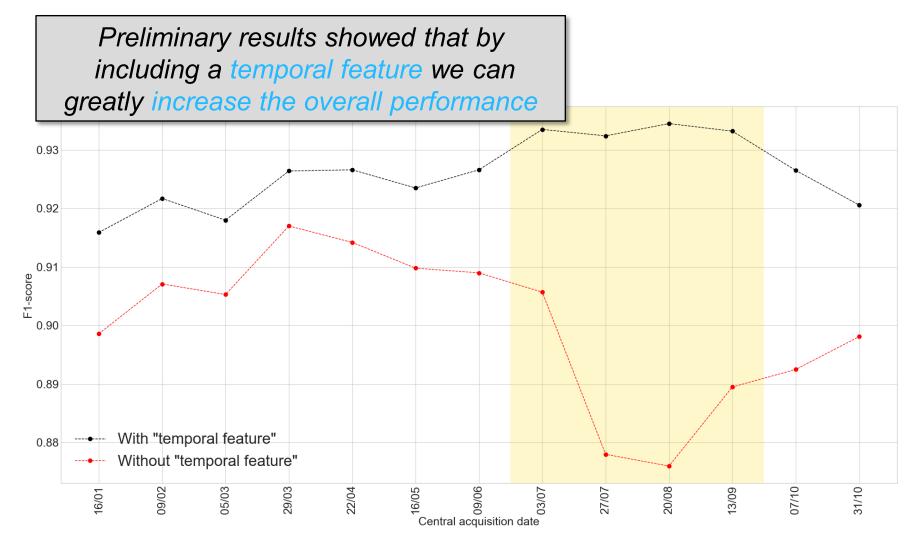
- We first mask out potential land cover changes by using annual data from Brazilian deforestation monitoring programs such as PRODES and DETER to focus on the seasonal components affecting each class
- Another challenge comes from the fact that the definition of dry and wet seasons may vary within the forest, just as landscape characteristics
- In order to be able to generate a robust database, we are now sampling data from different regions, prioritizing those expected to be stable over time



- The SAR backscatter values of different classes can be relatively similar during the wet season
- These effects are also pronounced for the coherences, in particular concerning croplands
- Ancillary data such as the local average monthly precipitation might help mitigating this problem



- We now apply our DLmodel to the target area for the entire year, now also inputting the acquisition dates as "temporal" features
- Further investigation and a larger sampling is still needed for achieving a model which can be robust to seasonal and regional effects on a large scale



Final Remarks and Outlook

- S-1 short time series showed a high potential for mapping the Amazon rainforest at ≤ 1 month with a spatial resolution as fine as 20m
- By exploiting the potential of a deep learning model, which can learn texture information and temporal decorrelation patterns by itself, we could achieve an overall acc. ≥ 90% even with only 3 acquisitions at 12 days revisit
- Validation with regular and reliable reference data is a challenge in the Amazon region, where e.g. semisupervised methods might be attractive for monitoring an environment with high seasonal variability
- We are still investigating the performance and potential of the proposed approaches on a larger scale and over different years to keep track of regional and seasonal patterns

THANK YOU!

ricardo.dinizdalmolinjunior@dlr.de

Ricardo Dal Molin Jr., FRINGE 2023, 15.09,202