Evidence for Slip Partitioning and Active Faulting along the Longmu Gozha Co Fault (LGCF) System from Continental-scale, Sentinel-1 InSAR Time-series analysis

Karakax F

Longmu Co F.

CO

Gozha

Marguerite MATHEY, Raphaël GRANDIN, Cécile LASSERRE, Martine SIMOES, Marie-Pierre DOIN, Philippe DURAND, FLATSIM Working Group

Tarim Basin

West Kunlun Range

Karakorum F.

Margot MATHEY (IRSN)

marguerite.mathey@irsn.fr

ForM (a)Ter

Tibetan Plateau

Altyn Tagh F.

[mm/yr]

LOS velocity

+5

Case study: Western Kunlun-Northern Tibetan Plateau

- Western Altyn Tagh Fault (ATF) not as well documented as Central ATF

- Complex kinematics with triple junction
- Few field studies (high elevations, remoteness)
- No success in previous geodetic attempts
- Can we assess interseismic loading and present-day kinematics thanks to Sentinel-1 data and InSAR time-series processing ?

Case study: Western Kunlun-Northern Tibetan Plateau

- Western Altyn Tagh Fault (ATF) not as well documented as Central ATF

- Complex kinematics with triple junction
- Few field studies (high elevations, remoteness)
- No success in previous geodetic attempts
- Can we assess interseismic loading and present-day kinematics thanks to Sentinel-1 data and InSAR time-series processing ?

Challenges Sentinel-1 Satellite	 Wide area : 10 tracks of 250 km width each Topographic gradients = low SNR Snow, glaciers, vegetation, sand dunes = loss of coherence Launched in 2014 Unmatched acquisition frequency: 6–12 days High sensitivity to vertical motion 	of	
FLATSIM service	For M Ter Sterre		ForM@Ter (2020): FLATSIM Data Products. CNES. (Dataset). doi: <u>10.24400/253171/FLATSIM2020</u> Thollard et al., 2021, MDPI doi: 10.2390/rc13183734
Automatic processing	g from L1-SLC to time-series, @CNES HPC facility		doi. <u>10.3370/1513103734</u>
Small baseline subset approach (NSBAS, Doin et al., 2011; Grandin, 2015) for low deformation using time redundancy of acquisitions (interferograms)		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
ERA-5 ECMWF atmospheric corrections (Jolivet et al., 2011)		89 89	2020 : 8 projects
Delivers displacement time-series in the Line of Sight of the satellite (LOS) and quality indicators		For Maler https://www.poleterresolide.fr/proj	2022 : 9 projects ets/en-cours/flatsim/ 3

Post-processing workflow of FLATSIM products

Referencing of LOS velocities

- \rightarrow Common referencing to GPS wrt Eurasia (Wang et al. 2020)
- ightarrow Bilinear ramps in range and azimuth
- ightarrow 1st order signal along the Altyn Tagh Fault (ATF)
- → A lot of short-wavelength signals (permafrost? gravity-driven motion? hydrological processes?)

Mathey et al. - ESA Fringe 2023 workshop – Leeds – 13 Sept 2023

Creep on the Gozha Co Fault (GCF)

 \rightarrow Left-lateral strike-slip fault

- → Creep clearly visible in Ascending geometry, less so in Descending geometry
- → Fit a simple step function and remove it to analyse non-tectonic motions

\rightarrow Left-lateral strike-slip fault

- → Creep clearly visible in Ascending geometry, less so in Descending geometry
- → Fit a simple step function and remove it to analyse non-tectonic motions

Mathey et al. - ESA Fringe 2023 workshop - Leeds - 13 Sept 2023

Linear/Seasonal signal separation and Eastward/Upward inversion

Tectonic signal (step function) removed

4 tracks overlap

Mathey et al. - ESA Fringe 2023 workshop - Leeds - 13 Sept 2023

0.0

81*11'

80°57' 81°4'

*50'

Mathey et al. - ESA Fringe 2023 workshop - Leeds - 13 Sept 2023

*50'

Mathey et al. - ESA Fringe 2023 workshop – Leeds – 13 Sept 2023

Tectonically representative velocities

٠

٠

٠

Key conclusions

• We are able to **separate tectonic and non-tectonic signals** of the order of **a few mm/yr over 5** years with **Sentinel-1** satellite

- Enhancement of automatic processing services, such as **FLATSIM**, will allow for improving the **detection threshold of numerous active faults** in the upcoming years :
 - less processing required by the (end-) user
 - broader areas
- Quality-check and **post-processing** still required

Use track redundancy : Signal separation along the Ghoza Co fault

Decreasing the detection threshold of active faults with InSAR

What is the lowest interseismic slip-rates that can be detected with InSAR?

→ depends on satellite, SNR_area, observation time span

How reliable are InSAR-derived slip-rates ?

 → formal uncertainties on slip-rates do not reflect all error sources
 → unwrapping errors ? referencing ? residual atmospheric delays ? nontectonic signal separation ..?