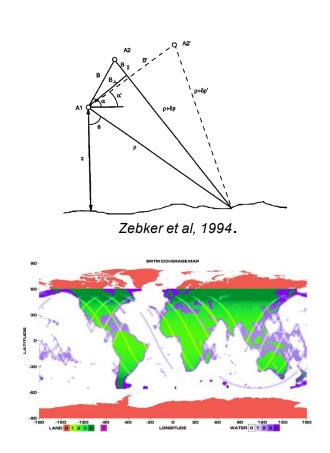
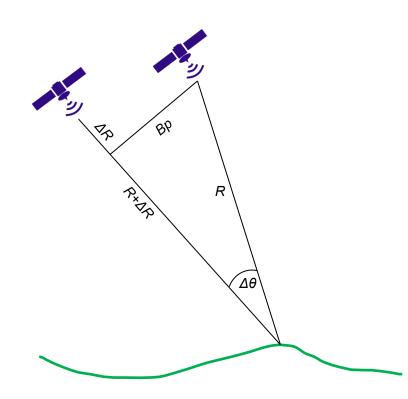


INSAR MONITORING IN AREAS WITH RAPIDLY CHANGING ELEVATION

Rachel Holley, Edward Sage, Narayanee Vummidi, Ben Conway Jones




Height errors in InSAR

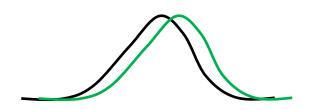
- Early days of InSAR: three-pass interferometry used to remove topographic signal
- SRTM era availability of 'global' DEM data
- Residual errors stack processing allows regression for height

Problem solved...?

Sensitivity to height

Height sensitivity:

$$\frac{\partial \varphi}{\partial z} \approx \frac{4\pi}{\lambda} \frac{B_p}{R \sin \theta}$$


Altitude of ambiguity:

$$AoA = \frac{\lambda}{2} \, \frac{R \sin \theta}{B_p}$$

- Height sensitivity increases with:
 - Larger baselines (Bp)
 - Steeper incidence angles (θ)
 - Shorter wavelengths (λ)

Poor alignment

- Low res DEM compared to SAR
- Out of date topography has changed

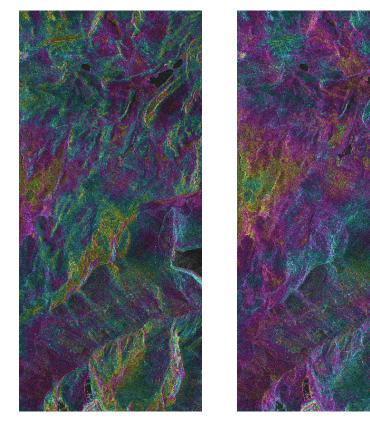
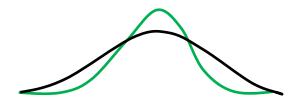
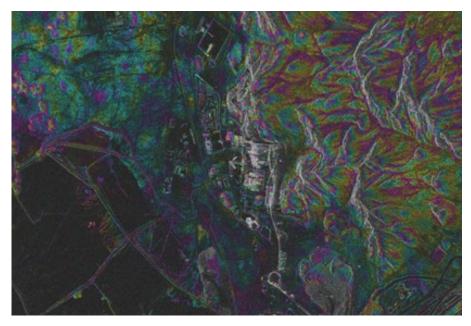
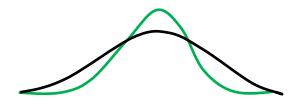
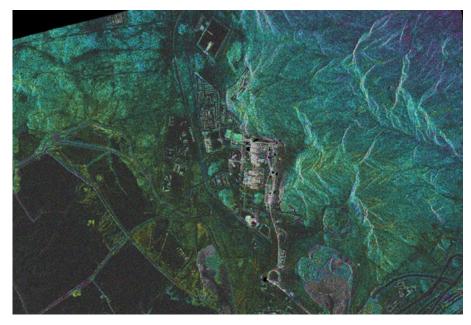
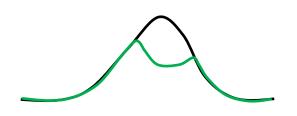




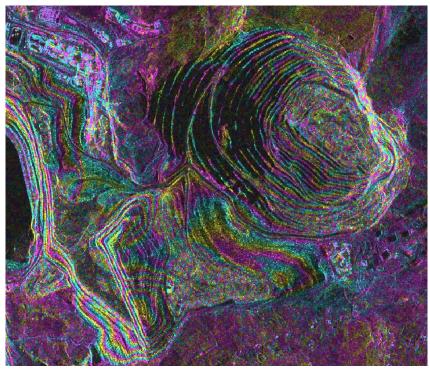
Image: © CGG, 2023. TerraSAR-X data: © 2023 Airbus Defence and Space / Infoterra GmbH. DigitalGlobe Products. DEM data: © Confidential client, 2023 and produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved.


- Poor alignment
- Low res DEM compared to SAR
- Out of date topography has changed



Kompsat-5 3m SAR, 350 m baseline, SRTM 90 m DEM


- Poor alignment
- Low res DEM compared to SAR
- Out of date topography has changed



Kompsat-5 3m SAR, 350 m baseline, proprietary 10 m DEM

- Poor alignment
- Low res DEM compared to SAR
- Out of date topography has changed

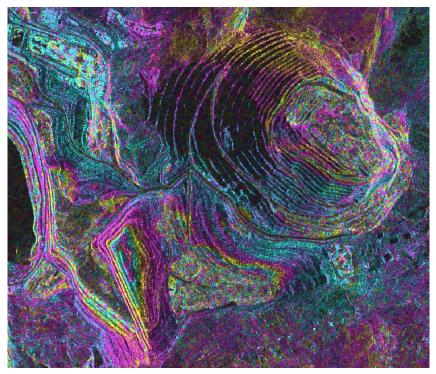

Copernicus GLO-30 DEM 2011-2015

Image: © CGG, 2023. TerraSAR-X data: © 2023 Airbus Defence and Space / Infoterra GmbH. DigitalGlobe Products. DEM data: © Confidential client, 2023 and produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved.

S

DEM residuals – common issues

- Poor alignment
- Low res DEM compared to SAR
- Out of date topography has changed

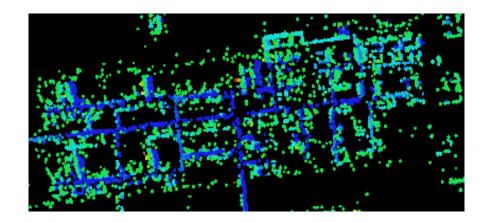
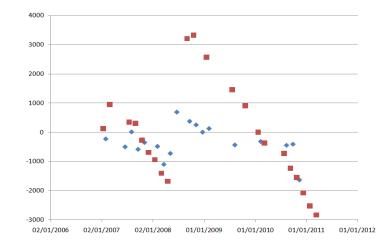

LIDAR DEM 2023

Image: © CGG, 2023. TerraSAR-X data: © 2023 Airbus Defence and Space / Infoterra GmbH. DigitalGlobe Products. DEM data: © Confidential client, 2023 and produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved.

Time series processing – regression for height correction

- Large stack of SAR data allows height correction
- Linear regression phase residual proportional to baseline
- Can invert for height correction separately, or typically with deformation

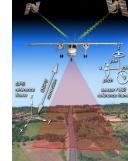
t_{11}	t ₁₂		t_{1m}	$\frac{4\pi}{\lambda} \frac{Bp_1}{R_1 \sin \theta_1}$	$\begin{bmatrix} Z_1 \end{bmatrix}$ $\llbracket \emptyset_1 \rrbracket$ $\llbracket \epsilon_1 \rrbracket$
<i>t</i> ₂₁	t ₂₂		t_{2m}	$\frac{4\pi}{\lambda} \frac{Bp_2}{R_2 \sin \theta_2}$	$\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \\ h \end{bmatrix} = \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \vdots \\ \varphi_n \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$
	:	٠.	:	:	Z_n Q_n ϵ_n
t_{n1}	t _{n2}		t _{nm}	$\frac{4\pi}{\lambda} \frac{Bp_m}{R_m \sin \theta_m}$	



Stack regressions - limitations

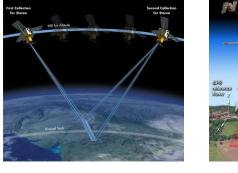
- Not enough SAR images in stack
- Low coherence areas surface change, or large height error
- Correlated baselines
- Rapidly changing topography
- Small baselines
 - Not a problem for deformation, but limits ability to model topography!
- Applications where that matters:
 - Volcanoes
 - New infrastructure
 - Mines

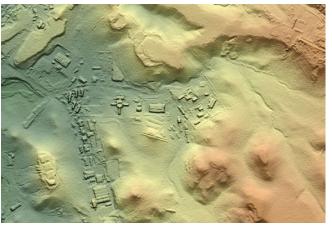

Mine sites – frequent and ongoing changes


- Continuing change affecting different areas at different times
 - Pit excavation
 - Waste/stock piles
 - TSF raises
 - Post-failure topography
- Co-occurring deformation
 - Settlement of dumped material
 - Triggered instability
- Intermittent coherence
 - Frequent surface disturbance
- Non-linear break-points in deformation regime
- Timely results crucial

Using alternative DEMs

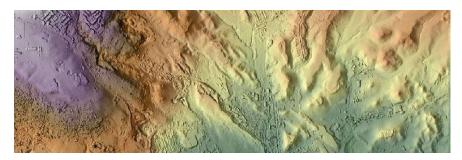
- Up to date high resolution DEMs can improve results
- Source depending on requirements
 - Satellite/airborne/drone stereo optical images (e.g. Worldview, Pleiades)
 - Satellite bistatic radar (e.g. TanDEM-X WorldDEM)
 - Airborne/drone LIDAR




13

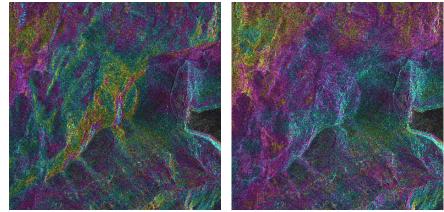
Using alternative DEMs

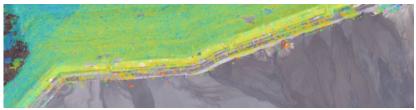
- Up to date high resolution DEMs can improve results
- Source depending on requirements
 - Satellite/airborne/drone stereo optical images (e.g. Worldview, Pleiades)
 - Satellite bistatic radar (e.g. TanDEM-X WorldDEM)
 - Airborne/drone LIDAR



Using alternative DEMs - limitations

- Cost dependant on specifications
- Availability cloud cover, flight restrictions, site logistics, archive coverage
- Small areas and discontinuous coverage – mosaicking, georeference issues
- Timeliness lead time after sudden changes

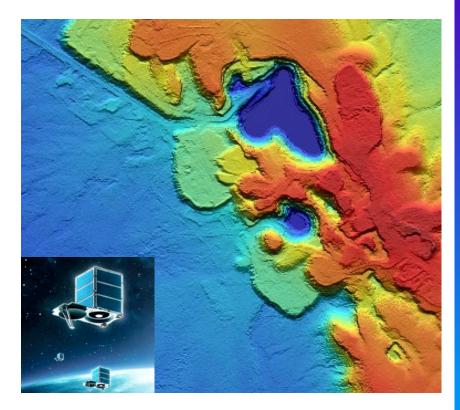



Image: © CGG, 2023. SAR data: © 2023 Airbus Defence and Space / Infoterra GmbH. DigitalGlobe Products. DEM data: © Confidential client, 2023 and produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved.

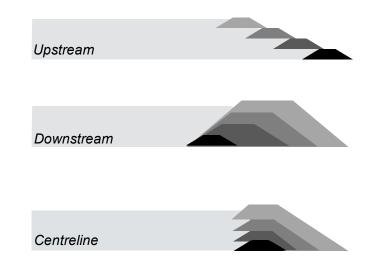
Using alternative DEMs - limitations

- Cost dependant on specifications
- Availability cloud cover, flight restrictions, site logistics, archive coverage
- Small areas and discontinuous coverage – mosaicking, georeference issues
- Timeliness lead time after sudden changes

Height error removed after using updated high-resolution DEM



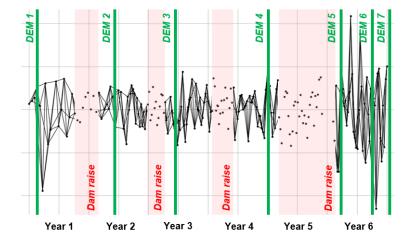
Using alternative DEMs - limitations


- Cost dependant on specifications
- Availability cloud cover, flight restrictions, site logistics, archive coverage
- Small areas and discontinuous coverage – mosaicking, georeference issues
- Timeliness lead time after sudden changes
 - > Improving capabilities: e.g. SkySat:
 - 1m DSM, typically 0.5m vertical accuracy
 - Acquisitions often within days

N.

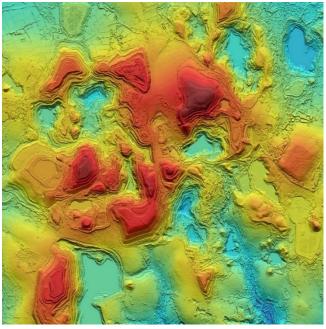
Retrospective studies –TSFs

- Past stability history is of great interest
 - Many TSFs have limited info on older structures
 - Historical InSAR enabled by 30 year SAR archive
- Past topography is harder to find:
 - Up to date DEM is exactly what you don't need!
 - Want DEM data closest in time to each time period, or even each interferogram



Tailings dam construction methods – older phases (black) can be buried under newer material

Retrospective studies –TSFs


- Past stability history is of great interest
 - Many TSFs have limited info on older structures
 - Historical InSAR enabled by 30 year SAR archive
- Past topography is harder to find:
 - Up to date DEM is exactly what you don't need!
 - Want DEM data closest in time to each time period, or even each interferogram
- Potential sources
 - Site operators
 - Open access local or global datasets
 - Archive satellite optical stereo pairs
 - Process periods between dam raises
 - Other sources of frequent historical DEMs in development

Conclusions

- 'Standard' InSAR approaches with global DEMs and stack-based regressions not well suited to frequently changing sites like mines and TSFs
- Both spatial and temporal resolution of DEM data crucial for accurate and actionable results
- Frequency and timeliness of DEM datasets improving for ongoing monitoring work (and additional elevation analysis products)
- Historical InSAR valuable if challenge of contemporary DEMs can be overcome

© Maxar Technologies 2023 / CGG

Final thought – georeferenced SLCs

- Discussion on Monday about distributing pre-georeferenced SLCs...
- Very quick test based on GLO-30 versus recent high-res DEM

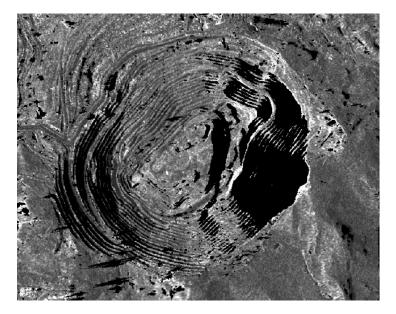


Image: © CGG, 2023. TerraSAR-X data: © 2023 Airbus Defence and Space / Infoterra GmbH. DigitalGlobe Products. DEM data: © Confidential client, 2023 and produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved.

Thank you

Website: www.cgg.com/satellite LinkedIn: CGG Satellite Mapping Twitter: @CGGsatellite Blog: satelliteblog.cgg.com

CGG

cgg.com