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Loss-of-Lock

Intermittent loss of coherence
(ex. short snowfall)

Loss-of-lock
(ex. plowing, harvesting)
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Loss-of-Lock in Spring/Summer
• InSAR observations of 

Dutch grasslands 
commonly show a 
complete loss of 
coherence in the 
spring and summer

• Practically speaking, 
this sustained long-
term loss of coherence 
results in a cutting of 
the time series into 
disconnected 
segments

Typical Coherence Matrix (Sentinel-1)
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Segmentation by Coherence
• We identify coherent time series 

segments where we are 
confident in the data quality

• Each segment is treated as an 
independent time series

• We can unwrap the time series 
with an acceptable level of error 
within the segment1

– ~90% success rate at 𝛾𝛾 = 0.1
– ~98% success rate at 𝛾𝛾 = 0.2

1 Probabilistic Estimation of InSAR Displacement Phase Guided by Contextual Information and Artificial Intelligence, 
 IEEE Transactions on Geoscience and Remote Sensing. 2022. 
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Partial Time Series Reconstruction
• We obtain an unwrapped time 

series for each segment

• Displacement is referenced to 
the first epoch

• How to reconnect the segments? ∆𝑧𝑧 =?
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Contextual Data Integration

Parcels form a natural averaging (multilooking) “unit”
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Grouping Observations
Key parameters:
• Land cover
• Soil type
• Water management 

zone (“Peilgebied”)

Ergodicity and representativity vs. noise suppression
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Filling in the Gaps

Enough coherent data to fill in the missing gaps!
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Model Estimation
• Many vertically 

unaligned segments
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Model Estimation
• Many vertically unaligned segments: 

𝜙𝜙 𝑡𝑡 =
4𝜋𝜋 cos𝜃𝜃

𝜆𝜆
� 𝑀𝑀 �𝑥𝑥, 𝑡𝑡 + Δ𝑧𝑧 𝑡𝑡 + 𝜖𝜖

• We can use the change in position in time to parameterize an average 
displacement model:

∆𝜙𝜙 𝑡𝑡 =
4𝜋𝜋 cos𝜃𝜃

𝜆𝜆
� ∆𝑀𝑀( �𝑥𝑥, 𝑡𝑡) + 𝜖𝜖∆
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Model Estimation
• Many unaligned 

segments
• We can use the change 

in position over time to 
parameterize an 
average displacement 
model

• Estimated model can 
be used to realign the 
segments
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Displacement Time Series
Zegveld, NL
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Displacement Time Series
Zegveld, NL
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Conclusions
• Loss-of-lock cuts the InSAR time series into disconnected segments
• Contextually similar scatterers are used to estimate a mean 

displacement model
• The effects of climate stresses are visible in the ground subsidence
• First accurate time series of surface motion of the Dutch peatlands!

InSAR Workflow Soil Model

Check out the preprints!
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