Estimating Peatland Surface Motion With Discontinuous InSAR Time Series Data

Philip Conroy, Simon van Diepen, Freek van Leijen and Ramon Hanssen

Ex: Extensometer
 measurement

TUDelft

- Ex: Extensometer measurement
- Strong
 deformation rates

ŤUDelft

- Ex: Extensometer measurement
- Strong
 deformation rates
- High dynamic range

ŤUDelft

- Ex: Extensometer measurement
- Strong
 deformation rates
- High dynamic range

ŤUDelft

Loss of coherence
 in summer

Loss-of-Lock

Loss-of-Lock in Spring/Summer

- InSAR observations of Dutch grasslands commonly show a complete loss of coherence in the spring and summer
- Practically speaking, this sustained longterm loss of coherence results in a cutting of the time series into disconnected segments

Typical Coherence Matrix (Sentinel-1)

Segmentation by Coherence

- We identify coherent time series segments where we are confident in the data quality
- Each segment is treated as an independent time series
- We can unwrap the time series with an acceptable level of error within the segment¹
 - ~90% success rate at $\gamma = 0.1$
 - ~98% success rate at $\gamma = 0.2$

¹ Probabilistic Estimation of InSAR Displacement Phase Guided by Contextual Information and Artificial Intelligence, IEEE Transactions on Geoscience and Remote Sensing. 2022.

Partial Time Series Reconstruction

- We obtain an unwrapped time series for each segment
- Displacement is referenced to the first epoch
- How to reconnect the segments?

Contextual Data Integration

zegveld_parcel_attributes_full [4]	
 objectid 	1646282
(Derived)	
(Actions)	
objectid	1646282
gewascateg	Grasland
gewas	Grasland, blijvend
gewascode	265
length	766.330184259988982
area	20757.373033329498867
objectid_2	NULL
aanid	27336
versiebron	luchtfoto
type	BTR-landbouw
soil_unit_	hVb
ahn_05_dsm	-2.428999901000000
ghg_mbgl	NULL
glg_mbgl	0.8 - 1.0
EERSTE_BOD	hVb
EERSTE GWT	11

Parcels form a natural averaging (multilooking) "unit"

Grouping Observations

Key parameters:

- Land cover
- Soil type
- Water management zone ("Peilgebied")

Ergodicity and representativity vs. noise suppression

Filling in the Gaps

Pointwise Segmentation Diagram (s1_dsc_t110)

Enough coherent data to fill in the missing gaps!

• Many vertically unaligned segments:

$$\phi_n(t) = \frac{4\pi\cos\theta}{\lambda} \cdot [M(x,t) + \Delta z_n] + \epsilon$$

• Many vertically unaligned segments:

$$\phi_n(t) = \frac{4\pi\cos\theta}{\lambda} \cdot [M(x,t) + \Delta z_n] + \epsilon$$

• We can use the change in position in time to parameterize an average displacement model:

$$\Delta \phi_n(t) = \frac{4\pi \cos \theta}{\lambda} \cdot \Delta M(x, t) + \epsilon_{\Delta}$$

• Many vertically unaligned segments:

$$\phi(t) = \frac{4\pi \cos \theta}{\lambda} \cdot \left[M(\hat{x}, t) + \Delta z(t) \right] + \epsilon$$

• We can use the change in position in time to parameterize an average displacement model:

$$\Delta \phi(t) = \frac{4\pi \cos \theta}{\lambda} \cdot \Delta M(\hat{x}, t) + \epsilon_{\Delta}$$

- Many unaligned segments
- We can use the change in position over time to parameterize an average displacement model
- Estimated model can be used to *realign* the segments

ŤUDelft

Displacement Time Series

Zegveld, NL

Displacement Time Series

Zegveld, NL

Conclusions

- Loss-of-lock cuts the InSAR time series into disconnected segments
- Contextually similar scatterers are used to estimate a mean displacement model
- The effects of climate stresses are visible in the ground subsidence
- First accurate time series of surface motion of the Dutch peatlands!

InSAR Workflow

Soil Model

