Towards global volcano deformation monitoring using satellite InSAR

uliet Biggs, Pui Anantrasirichai, Fabien Albino, Milan Lazecky, Yasser Maghsoudi

Volcano Deformation: Measurements

The LïCSAR volcano database of Sentinel-1 InSAR data Dataset: 2,019,621 images of 1150 volcanoes

Opportunities

- Understanding Magmatic Systems
- Monitoring and Forecasting

Challenges:

- Interpretation
- Timely dissemination

Machine Learning Tools

Biggs et al, Bull Volc, 2022

Towards global volcano deformation monitoring using satellite InSAR

Part 1: CNN

• Large Scale Demonstration of Anantrasirichai et al (2018,2019a,b)

Part 2: Development of New Methods

- New Architectures
- New Applications
- New Catalogues

Deep Learning Framework: CNN

LicSAR test dataset: 30,249 interferograms. Classification Accuracy: 0.981 Detection Threshold: 3-4 cm depending on conditions

Anantrasirichai et al, 2018, 2019a,b

Biggs et al, Bull Volc, 2022

Sentinel-1 Acquisitions

CEDA Sentinel-1 Mirror Archive

LiCSAR Processing Chain (Lazecky et al, 2020)

Wrapped Interferograms LiCSAR Portal

Crop to Volcano AoI using GVP

Expert Review

Detection

Automatic Processing

592,224 images; 1,084 volcanoes

Biggs et al, Bull Volc, 2022

Biggs et al, Bull Volc, 2022

Large Deformation Events Galapagos:

1,247 (38%) detections, including 904 from Sierra Negra

Large Eruptions & Intrusions: Kilauea + Taal + Etna + Erte Ale = 149 flags

Slow Deformation

Tambora (33 detections): Subsidence of 8 cm/yr - Site of largest historical eruption

Reykjanes (49 detections): Pre-eruption

- lots of subsequent studies...

Rekjanes (49 detections): Geothermal Plant

Rinjani (49 detections): M6.9 Earthquake

Kverfjoll (55 detections): Ice Cap

Biggs et al, Bull Volc, 2022

Volcano Deformation Portal

https://comet.nerc.ac.uk/comet-volcano-portal/

2021-08-02 2021-09-01 Probability of magmatic origin

Volcano 🍦	Date 🔶	
Kilauea	2023-08-04	View
Sierra Negra	2023-08-03	View
Tambora	2023-07-11	View
Bezymianny	2023-06-24	View
fujisan	2023-06-23	View
Rinjani	2023-06-19	View
Asavyo	2023-05-04	View
Erta Ale	2023-04-27	View
Irazú	2023-04-27	View
Turrialba	2023-04-27	View

II II

Towards global volcano deformation monitoring using satellite InSAR

Part 1: CNN

• Large Scale Demonstration of Anantrasirichai et al (2018,2019a,b)

Part 2: Development of New Methods

- New Architectures
- New Applications
- New Catalogues

See poster session for more details:

• Anomaly Detection For The Identification Of Volcanic Unrest In Satellite Imagery; Robert Gabriel Popescu, Nantheera Anantrasirichai, Juliet Biggs

Semi-supervised Learning: Methods

Learning the task

See poster session for more details:

• Semi-supervised Learning Approach for Ground Deformation Detection in InSAR, Nantheera Anantrasirichai, Tianqi Yang, Juliet Biggs

Denoising 1: Deep Learning

See poster session for more details:

• Semi-supervised Learning Approach for Ground Deformation Detection in InSAR, Nantheera Anantrasirichai, Tianqi Yang, Juliet Biggs

See poster session for more details:

• Separating Volcanic Deformation Signals at Silicic Caldera Systems Using ICA; Edna W. Dualeh, Juliet Biggs

Global InSAR Database: Metadata Studies

1) A significant statistical link to volcanic eruptions : 3) Architecture of active magmatic systems:

2) InSAR detections often pre-eruptive (~50%):

Biggs et al, 2014, Furtney et al, 2018, Ebmeier et al, 2018

$$\Delta AIC = AIC_{sigmoid} - AIC_{linear} = n(\ln \frac{RSS_s}{RSS_l}) + 2$$

Albino et al, Rem. Sens., 2022

Classification of Signals: Time

East African Rift: 64 volcanoes, 4000 interferograms

16 volcanoes with high SNR

Volcano		Detection		Model	Sigmoid	$R^2>0.75$	
	$ A_B $ (cm)	σ_A (cm)	$ A_B /\sigma_A$	∆AIC	t _c (Days)	au (Days)	U_{max} (cm)
Fentale	5.8	1.0	5.8	-133	20150422	43	8.3
Erta Ale	18.0	1.9	9.5	-86	20170626	146	-19.0
Tullu Moje	14.7	1.0	14.7	-61	20161130	212	13.4
Suswa	5.5	1.0	5.5	-49	20181025	64	6.2
Kone	6.1	1.2	5.1	-31	20190329	426	-8.2
Olkaria	7.9	1.4	5.6	-10	20170429	261	-10.7
				Model	Linear	$R^2 > 0.75$	
				∆AIC	v_B (cm/yr)	σ_{B} (cm/yr)	b
Corbetti	26.1	1.6	16.3	-4	4.6	0.1	1.47
Alu-Dallafilla	6.10	1.5	4.1	-3	-1.3	0.1	1.53
Silali	3.4	0.4	8.5	-2	-0.7	0.05	1.35
Dallol	14.6	1.2	12.2	10	-3.2	0.1	1.45
Paka	4.4	0.5	8.8	11	-0.7	0.06	1.61
Gada Ale	9.9	1.4	7.1	21	-1.9	0.1	1.45
Dabbahu	22.0	2.7	8.1	23	3.9	0.2	1.65

				Model	Linear	+ Seasonal	
					v_B (cm/yr)	A_s (cm)	
Nabro	5.5	1.2	4.6		1.7	2.9	
Alutu	3.8	0.2	19		-0.8	2.1	
Haledebi	5.8	1.3	4.5		0.4	2.1	

Sigmoidal [6] - transients

Linear [7] - steady state

Dallol (DAL)	Gada Ale (GAD) v = -1.9 cm/yr	Alu-Dallafilla (ALD)
$\tau = 146 \text{ days}$	15°N DALA GAD ALD ZERT ALD ZERT	Nabro (NAB)
Dabbahu (DAB)	10°N	$A_{s} = 2.9 \text{ cm}$ Haledebi (HAL) $V = 0.4 \text{ cm/yr}$ $A_{s} = 2.1 \text{ cm}$
Fentale (FEN) $\tau = 43 \text{ days}$ $U_{\text{max}} = 8.3 \text{ cm}$	5°N signal-to-noise ratio	Kone (KON) $\tau = 426 \text{ days}$ $U_{\text{max}} = -8.2 \text{ cm}$
Tullu Moje (TUL) Tullu Moje (TUL) $\tau = 212 \text{ days}$ Umax= 13.4 cm	0 5 10 15 20 SIL PAK	Alutu (ALU)
Corbetti (COR)		Silali (SIL) v = -0.7 cm/yr
Olkaria (OLK) T = 261 days U_{max} = -10.7 cm 2015 2016 2017 2018 2019 2022	Suswa (SUS) $\tau = 64 \text{ days}$ $U_{\text{max}} = 6.2 \text{ cm}$ 2015 2016 2017 2018 2019 2020	Paka (PAK) v = -0.7 cm/yr 2015 2016 2017 2018 2019 2020

Albino et al, Rem. Sens., 2022

Classification of Signals: Space

East African Rift: 64 volcanoes, 4000 interferograms 16 volcanoes with high SNR

	Tempora	l parame <i>al</i> . 202	Source parameters (This poster)			
Volcano	Trend	Time period (days)	Rate (cm/yr)	depth (m)	Volume (m³)	
Alu-Dalafilla	Linear		-1.3	1.2E+03	-4.7E+05	
Corbetti	Linear		4.6	7.7E+03	6.9E+07	
Dabbahu	Linear		3.9	5.3E+03	1.8E+07	
Dallol	Linear		-3.2	1.3E+03	-1.2E+06	
Gada Ale	Linear		-1.9	2.2E+03	-2.8E+06	
Erta Ale	Sigmoid	146		1.3E+03	-6.3E+05	
Olkaria	Sigmoid	261		7.8E+03	-3.8E+07	
Suswa	Sigmoid	64		3.8E+03	4.4E+06	
Tullu Moje	Sigmoid	212		6.2E+03	3.0E+07	
Note: Orange source parameters indicate the inversion results were poor						

See poster session for more details:

 Systematic Extraction of Volcano Deformation Source Parameters from Sentinel-1 InSAR Data; Ben Ireland, Juliet Biggs, Nantheera Anantrasirichai

Albino et al, Gcubed, 2021

Conclusions

Operational Methods, CNN:

- Applied to large datasets of interferograms to detect eruptions, intrusions, slow deformation and transients.
- Runs automatically on LICSAR systems and results released through COMET volcano portal.

New Methods:

- Proof-of-concept studies using new architectures for anomaly detection and semi-supervised learning.
- New applications to separating signals and noise
- Developing a systematic global database of volcano deformation

Questions?

European Space Agency

Semi-Supervised Learning

• A small portion of the training data is labeled, and the majority is unlabeled.

Model understands the task

https://towardsdatascience.com/supervised-semi-supervised-unsupervised-and-self-supervised-learning-7fa79aa9247c

Semi-supervised Learning: Results

• LiCSAR test dataset (30,249 interferograms)

Training Data	#P	#TP	#FP	#FN	Paper	
Envisat	1369	42	1327	0	Application of Machine Learning to Classification of Volcanic	
Envisat + FP	104	42	62	0	Deformation in Routinely Generated InSAR Data, 2018	
Synthetic + FP	50	41	9	1	A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets, 2019	
Semi-supervised	45	40	5	2	Contrastive learning + Faster-RCNN	

See poster session for more details:

• Semi-supervised Learning Approach for Ground Deformation Detection in InSAR, Nantheera Anantrasirichai, Tianqi Yang, Juliet Biggs

Unsupervised Learning: Results

Example:

Lawu, Indonesia

Toprgraphically-correlated atmospheric noise

Supervised: Flagged

Unsupervised: Normal

See poster session for more details:

• Anomaly Detection For The Identification Of Volcanic Unrest In Satellite Imagery; Robert Gabriel Popescu, Nantheera Anantrasirichai, Juliet Biggs