

SAR2CUBE- AN OPEN FRAMEWORK FOR AN EFFICIENT SETUP OF INSAR APPLICATIONS IN ANALYSIS READY DATA CUBES

FRINGE 2023

Authors Centolanza Giuseppe¹ Alexander Jacob², Michele Claus²

> ¹Technology, Barcelona, Spain ² Eurac Research, Italy Dares

ESA SEOM SInCohMap project

dataset stored on disk

More than 1000 coh maps

More than 1000 ifg phases

More than 1000 ifg

West Wielkopolska (Poland)

Doñana (Spain)

European Space Agency

 $D \land R \equiv S$

eurac research

Universitat d'Alacant Universidad de Alicante

UPC UNIVERSITAT POLITÈCNICA **DE CATALUNYA** BARCELONATECH

Land-cover maps

 \succ

 \geq

SAR2Cube Project definition

List of presentation and other interesting information

SAR2CUBE in ESA project:

SAR2CUBE webpage

SAR2CUBE preprocess gitlab

Notebook with updated OTF operators

openEO web editor

List of presentation and other interesting information

- ESA Fringe 2021: 'SAR2CUBE: A Data Cube Concept for Providing Both Interferometric and Intensity Based Products through an Open Source Framework" A. Jacob, M. Claus, G. Centolanza, F. Moral, F. Vicente-Guijalba, P. Mougnaud
- Living Planet 2022: "Exploring Time Series of Sentinel-1 Interferometric Coherence in Land Cover Mapping: A Step Forward" J.M. Lopez-Sanchez, M. Busquier, A. Jacob, M. Claus, B. Ventura, C. Lopez-Martinez, L. Yam, G. Centolanza, A. Faridi, E. Makhoul, M. Engdahl
- IGARSS 2023: 'SAR2CUBE AN OPEN FRAMEWORK FOR AN EFFICIENT SETUP OF SAR IMAGERY IN ANALYSIS READY DATA CUBES" M. Claus, A. Jacob, EURAC Research, Italy; G. Centolanza, DARES Technology, Spain; J. M. Lopez-Sanchez, University of Alicante, Spain

SAR2Cube Output Unitary Data

Complex S-1 A/B IW SLC data

Temporal stack of co -registered SLC images as the fundamental unit of the datacube .

- Image alignment
- Radiometric calibration
- S-1 IW mode requires
 de-swathing and de -bursting
- Dual VV-VH polarizations

Geometrical phase component

In DInSARit is required to remove topographical and flat earth components . Computed exploiting the perpendicular baseline defined between each secondary image and the reference one

Georeferencing grid

The SLC data is defined in sensor geometry slant-range plane. The transformation from the sensor's domain to a more useful perspective, as a geographical coordinate system, it is required to include additional information to the Datacube

SAR2Cube Pre processing

Modify SNAP

- > Include save Output phase component in Code
- > Rebuild SNAP Sentinel-1 toolbox with changes
- > More information at

SAR2Cube Data Indexing

Six L0 datacubes , pre-processed with SAR2Cube, indexed with OpenDatacube, and available through openEO:

- Doñana: track 147 (ASC), 2017/2019, 181 samples
- Doñana: track 154 (DSC), 2017/2019, 178 samples
- South Tyrol: track 117 (ASC), 2016/2022, 311 samples
- South Tyrol: track 168 (DSC), 2016/2022, 305 samples
- Finland AOII: track 80, Nov 2017/ Nov 2018, 64 samples
- Finland AOI2: track 80, Nov 2017/ Nov 2018, 64 samples \geq

4326

4326

xarray.Dataset

⊢ Dimensions:	(time: 228, x: 44250, y: 7751)					
▼ Coordinates:						
time	(time)	datetime64[ns]	2016-09-08T23:59:59 2020-11	8		
у	(y)	float64	5.099e+06 5.099e+06 5.091e+06	8		
x	(x)	float64	5.44e+05 5.44e+05 5.882e+05	8		
spatial_ref	0	int32	32632	8		
▼ Data variables:						
i_VH	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
q_VH	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
i_VV	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
q_VV	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
grid_lon	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
grid_lat	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
phase_unwrap	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
LIA	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
DEM	(time, y, x)	float32	dask.array <chunksize=(1, 3000),="" 3000,="" meta="np.nd</td"><td>8</td></chunksize=(1,>	8		
▼ Attributes:						

EPSG:32632 crs: grid_mapping : spatial_ref

DEM, LIA, i_VH, i_VV, q_VH, q_VV, grid_lat, grid_lon, phase_unwrap

SAR2Cube Introduction to OpenEO processing

 $D \land R \equiv S$

Feature 1 Feature N

SAR2Cube OTF Operators

- Temporal subset
- Spatial subset
- Intensity/Amplitude
- > Multilook
- Box-car filter
- Interferometry
- Pixel Selection for PSI
- Geocoding

Main aspects of the operator:

- > Extract a filtered interferogram list from the full list according to a limitation of temporal and spatial baselines.
- Generation of the differential interferograms over a temporal and spatial subset
- Generation of mean coherence map for the full interferogram dataset
- Selection of pixels based on coherence and setup for PSI processing

Main aspects of the operator:

- > Extract a filtered interferogram list from the full list according to a limitation of temporal and spatial baselines.
- Generation of the differential interferograms over a temporal and spatial subset
- Generation of mean coherence map for the full interferogram dataset
- Selection of pixels based on coherence and setup for PSI processing

Main aspects of the operator:

- > Extract a filtered interferogram list from the full list according to a limitation of temporal and spatial baselines.
- > Generation of the differential interferograms over a temporal and spatial subset

Computation of 253 differential interferograms with different Dask LocalCluster setups:

- LocalCluster(n_workers=4, threads_per_worker=1, processes=True, memory_limit=64GB')
 - CPU times: user 30.1 s, sys: 4.46 s, total: 34.6 s \checkmark
 - Wall time: 5m in 55s \checkmark
- LocalCluster(n workers=1, threads per worker=1, processes=True, memory limit=64GB') \succ
 - CPU times: user 3min 36s, sys: 1min 29s, total: 5min 6s \checkmark
 - Wall time: 21m in 13s \checkmark

[37]: xarray.Dataset

⊢ Dimensions:	(time : 23, <u>;</u>	y: 1000, x: 4000)	
▼ Coordinates:				
time	(time)	datetime64[ns]	2022-11-24 2023-08-15	8
У	(y)	float64	-1.842e+032.842e+03	8
х	(x)	float64	4.998e+03 5e+03 8.998e+03	8
spatial_ref	0	int32	32632	8
▼ Data variables:				
i_VV	(time, y, x)	float64	dask.array <chunksize=(1, 1000,="" 2),="" meta="np.ndarr</td"><td>8</td></chunksize=(1,>	8
q_VV	(time, y, x)	float64	dask.array <chunksize=(1, 1000,="" 2),="" meta="np.ndarr</td"><td></td></chunksize=(1,>	
phase	(time, y, x)	float64	dask.array <chunksize=(1, 1000,="" 2),="" meta="np.ndarr</td"><td></td></chunksize=(1,>	
grid_lon	(time, y, x)	float64	dask.array <chunksize=(1, 1000,="" 2),="" meta="np.ndarr</td"><td>8</td></chunksize=(1,>	8
grid_lat	(time, y, x)	float64	dask.array <chunksize=(1, 1000,="" 2),="" meta="np.ndarr</td"><td>8</td></chunksize=(1,>	8
⊢ Indexes: (3)				
▼ Attributes:				
crs : grid mapping :	EPSG:3263 spatial ref	2		

Input data with size y:15x15 Km

SAR2Cube openEO Web Editor

Access to the web editor:

> Access through the link

- Filter the search in collection: SAR2CUBE
- > The list of collection already indexed and ready to be used
- Please contact <u>Michele.Claus@eurac.edu</u> or <u>Alexander.Jacob@eurac.edu</u> to get a free access to the collection and test the different OTF tools you can find in gitlab:

SAR2CUBE is an open tool for the scientific community

SAR2CUBE

Collections (6/123)

SAR2Cube_SInCohMap_S1_L0_80_DSC_FINLAND_AOI1 SAR2Cube_SInCohMap_S1_L0_80_DSC_FINLAND_AOI1

 $\label{eq:same_sincohMap_s1_L0_80_DSC_FINLAND_AOI2 SAR2Cube_SInCohMap_S1_L0_80_DSC_FINLAND_AOI2 SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOhMAD_S1_SAR2CUBE_SINCOHMAD_S1$

 $\label{eq:sar2cube_sinCohMap_s1_L0_117_ASC_SOUTH_TYROL SAR2Cube_sinCohMap_s1_L0_117_ASC_SOUTH_TYROL \\$

SAR2Cube_SInCohMap_S1_L0_147_ASC_DONYANA SAR2Cube_SInCohMap_S1_L0_147_ASC_DONYANA

SAR2Cube_SInCohMap_S1_L0_154_DSC_DONYANA SAR2Cube_SInCohMap_S1_L0_154_DSC_DONYANA

 $\label{eq:sar2cube_sincohMap_s1_L0_168_DSC_SOUTH_TYROL SAR2cube_sincohMap_s1_L0_168_DSC_SOUTH_TYROL \\$

eesa

 $\mathbf{z} = \mathbf{S}$

eurac research

 $D \wedge R \equiv S$

Questions ?

List of presentation and other interesting information

- SAR2CUBE in ESA project: <u>https://eo4society.esa.int/projects/sar2cube/</u>
- SAR2CUBE webpage: <u>https://sar2cube.netlify.app/</u>
- SAR2CUBE preprocess gitlab: <u>https://github.com/SARScripts/preprocess</u>
- Notebook with updated OTF operators: <u>https://gitlab.inf.unibz.it/earth_observation_public/eurac-openeo-examples/-/tree/main/python</u>

openEO web editor: https://editor.openeo.org/?server=https%3A%2F%2Fopeneo.eurac.edu&discover=1

SAR2Cube Pre processing

Phase unwrapping overview:

- > The topographic and geometrical phase is used in linear operators such as sum or difference and the results interferogram difference of the pre-processing gives as result a wrapped phase.
- SNAPHU software works with a reduced size of matrices. The output matrices ingested in datacubes are bigger than this limit.
- Multiblock phase unwrapping has been implemented to overcome the dimension of S1 products. The calibration between neighbor blocks is performed through histogram calibration.

Conclusions and Outlook

What we have

- Prototype implementation for SLC data cubes
- Fully build and implemented using open source
- Accessible with openEO interfaces
- Scalable processing framework
- Storage efficient
- Improvement of the Interferometric pre-process
- Set of OTF already defined processes in OpenEO
- Useful in real world applications

What we are working on

- Move to a more operational setup
- > Upcoming in openEO Platform
 - ✓ Additional SAR OTF operators
 - ✓ E.g. Speckle Filtering
 - ✓ Calibration
- Integrate higher level processing in openEO

✓ PSI?

- On-demand pre-processing
- Integrate other SAR sensors
- Metadata generation

SAR2Cube Pre processing

High computational cost