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STV background

STV: a 2017 Decadal Survey
Incubation observable

NASA selected a Surface
Topography Vegetation
study team during 2020-
2021 to make
recommendations for
investments over the next
decade to enable an STV
mission in the late 2030’s

Space Administration

OBSERVING EARTH'S CHANGING
SURFACE TOPOGRAPHY &
VEGETATION STRUCTURE
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STV identified gap-filling activities

CANDIDATE ARCHITECTURES DEVELOPED AND EVALUATED

Ilteration to Refine Needs and Trade Studies
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@ ¢ Sensitivity modeling * Multi-sensor fusion ¢ |n situ and airborne * Sensor design,

o with products at formulation and campaigns trades, development
g different resolutions testing * Analyze existing and and demonstration
b and accuracies ¢ Information system newly acquired data ¢ Constellation and

g ¢ Utilization of products hardware and ¢ Algorithm and sensor web

= with quantified errors software development processing simulation

3 in use cases improvements experiments

o

a

g Observing System Simulation Experiments (OSSE)

Knowledge gaps: the understanding of product quality needed to accomplish science and applications objectives is inadequate
Methodology gaps: the approaches to derive height products from geophysical information are inadequate

Algorithm gaps: the solutions to derive geophysical information from data are inadequate

Measurement gaps: the sensor and platform assets to acquire needed data are inadequate
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Volcano topography and
topography change needs

Our primary objectives are:

1.

2.

Quantify the topography change product needs
for dynamic volcano models

Quantify the product needs for volcanic hazards
forecasting: lava flow pathways and
thicknesses, lava domes, avalanches, pyroclastic
flows and deposits

Understand the impacts of measurement type
and architecture on Objectives 1-2

Figure 1. Kilauea volcano produced significant lava flows over the three-month eruption May — August, 2018.
(a) Differential flow thicknesses used a combination of pre-eruption bare earth lidar, near shore bathymetry,
and pre-, co-, and post-eruption NASA GLISTIN-A airborne bistatic synthetic aperture radar (SAR) DEMs and
flow outlines (Lundgren et al., 2019). The red box in (a) shows the 1 x 1 km area DEMS shown in (b) through (f)
(b) NED 10 m. (c) TanDEM-X12 m. (d) Lidar 1 m bare earth. () DEMs from co-eruptive 0.5 m lidar (Dietterich et
al., 2021) and (f) post-eruption GLISTIN 3 m data show a new eruptive vent and lava flow field, with a lava
channelto the north, within the Leilani Estates residential area.



Volcano Project Summary

Volcano
topography
datasets

Caldera collapse
+ lava effusion model
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Methods

 Surface process forecasting
* Kilauea flow forecasting
* Silicic dome and flow simulations
* Dome stability analysis

* Physics-based models of
volcanic eruptions and lava
flows

* Dynamical models

* Coupled models of eruption
dynamics and flows
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Lava flow thickness computation
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GLISTIN-A lava flow topography
change and volume estimation:

1. Veg. height: 2017 GLISTIN DEM
minus bare-earth LIDAR DEM
(from PGV via HVO)

2.  GLISTIN co-eruption DEMs are
differenced relative to Feb. 2017,
giving the GLISTIN height change.

3. USGS lava flow shapefiles used to
select flow areas.

4. These two (3) are summed to give
the flow height (or thickness)

Flow shape files courtesy HVO, USGS
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Lava flow modeling
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T T

Alberto Roman (JPL) has developed a 000 Kl
lava flow modeling code (flowDEM) |

that is reasonably simple: 0

* Newtonian viscous s
e jsothermal e Y
Yet captures the first-order flow 000!

features, and is a suitable starting
point for testing lava flow sensitivity to
topography resolution and noise
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Simulation of Fissure 22, May 21, 2018, Kilauea Lower
East Rift Zone (12.5 m sampled LiDAR bare-earth DEM)



Model for lava flows over topography

* Non-linear convection-diffusion PDE (e.g. Hinton et al., JFM, 2019)

Pg
at 3,u

* Competition of two terms
* Gradients in the topography: VB
» Gradients in the flow thickness: Vh

V- [h3V(B + h)]

* Solution through second order, shock capturing, finite difference
scheme (Kurganov and Tadmor, 2000)



Kilauea F22 DEM resolution example

Higher (5 m) vs lower (25 m) resolution DEM

topography 5 m topography 256 m Difference, time 0.0 hours
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Flow parameters: q = 120 m3/s, pu = 10% Pa-s, solution grid scale =5 m



Noise effects: constant slope experiments

Real topography Measured topography

Measured topography

.......... Real topography

Injection

- Onoise]

How noise levels and spatial resolution affect lava flow models?
For simplicity, we first assume uncorrelated gaussian noise



Resolution and noise effects: constant slope
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Gaussian obstacle
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Key Takeaways

* STV science and technology gap filling
efforts are underway (see AGU session)

* For volcano science we are investigating
lava flow simulation outcomes:
* Noise levels
* Thickness and coverage
* Flow advance rate
 Effects of updated topography

e Other considerations:
* Flow boundary detection

* Increased physical realism (temperature-
dependent viscosity, channelized flow)

Fissure 22 on May 22, 2018
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Thank you!



End Goal/Planned Contribution to STV Observing
System Architecture
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* We will combine modeling tools with existing satellite
and airborne topography datasets to investigate the
impact of data quality and spatiotemporal sampling on | | |
our capability to forecast volcanic systems. T Diemmonvetiey

e Our goal is to provide a quantitative framework
relating the characteristics of topographic change
measurements to the accuracy and uncertainty of .
model solutions and predictions. 0-

* This will allow us to identify optimal sampling
strategies for different volcanic processes, which will
serve as guidance for future missions.
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