

30 years of postseismic deformation of a continental normal fault, measured by multi-satellite InSAR time-series

Natalie Forrest¹, Tim Craig¹, Tim Wright¹, Laura Gregory¹, Ekbal Hussain², Alex Copley³, Milan Lazecky¹

¹University of Leeds, ²BGS, ³University of Cambridge

FRINGE 2023 University of Leeds: 11th -15th Sep 2023

💻 📰 📕 📰 💳 🛶 📲 🔚 🔚 🔚 📰 📲 🚍 🛶 🚳 🍉 📲 🚼 🖬 🔤 📾 🔤 🏜 👘 🔹 The European space agency

Example normal faults in the field

Normal fault in Gulf of Corinth, Greece

Normal fault offset in 2016 Central Apennines, Italy earthquakes (from Laura Gregory)

💳 🔜 🖬 🔚 🚾 🛶 🛯 🖉 🏣 🔜 🔄 🖉 🗮 🚍 📲 📥 🚳 🍉 📲 👯 🔚 🛨 🔤 📾 🕸 🎽 🔶 The European space agency

A simplified earthquake cycle model

Geological time

3

· e e sa

Earthquake cycle models are based on strike-slip faults

Figure adapted from Burgmann, 2018

Aim of the project: study normal fault dynamics

Concepts about earthquake cycle (from strike-slip faults)

Thirty years of geodetic observations

To better understand normal fault dynamics

· eesa

Figure adapted from Bürgmann, 2018

Figure adapted from Elliott et al, 2016

There are two primary postseismic mechanisms

6

· e e sa

Two end-member models of viscoelastic relaxation

Selection criteria for choosing normal faults to study

Previous studies of the Grevena earthquake (Mw 6.5)

Conceptual timeline of Grevena postseismic deformation

→ THE EUROPEAN SPACE AGENCY

Coseismic interferogram for Grevena earthquake

Grevena Mw 6.5 13/05/1995

· eesa

11

ERS 29/06/1993 to 01/09/1995

Coseismic & 3.5 months postseismic

N-dipping normal fault

12 fringes \approx 35 cm LOS displacement

ERS interferograms show early postseismic displacement

Grevena Mw 6.5 13/05/1995

ERS 10/11/1995 to 13/03/1997

6 to 22 months after the earthquake

1.5 fringes \approx 4 cm LOS displacement

Sharp interface
Lengthscale ~10km
Afterslip

Building an ERS postseismic time-series network

· eesa

13

ERS time-series show postseismic deformation

→ THE EUROPEAN SPACE AGENCY

· eesa

14

Constructing the Envisat postseismic time-series

13 Oct 2006 to 6th April 2007 11.5 to 12 years after the earthquake

Sentinel-1: LiCSBAS doesn't show any displacement

19.5 to 26.5 years after the earthquake

Does this mean that postseismic deformation has finished?

Sentinel-1: EGMS doesn't show any displacement

→ THE EUROPEAN SPACE AGENCY

Bringing observations together

18

Summary: 30-yr time-series of postseismic on dip-slip fault

Three generations of SAR satellites measured postseismic deformation following Mw 6.5 Grevena earthquake

> Generating 30 yr InSAR timeseries, to interpret understudied dip-slip fault dynamics

Next: Run forward models & compare with strike-slip faults