

Efficient Earth Surface Monitoring with TomoSAR: from PSDS to ComSAR

Dinh HO TONG MINH

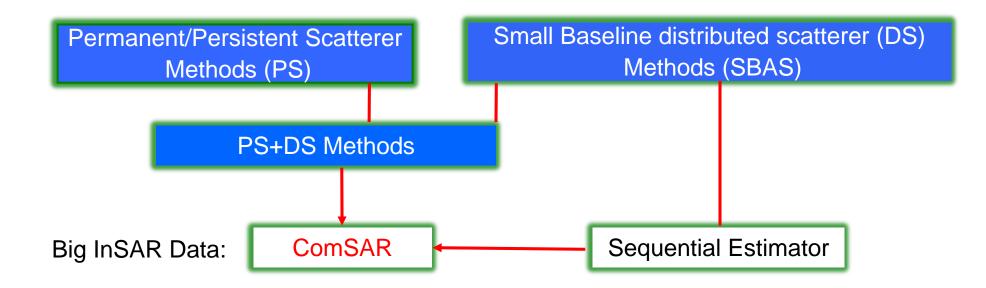
with contributions:

Yen-Nhi Ngo – INRAE Nicolas Baghdadi – INRAE Marie-Pierre Doin – ISTerre Erwan Pathier - ISTerre Stefano Tebaldini - Polimi

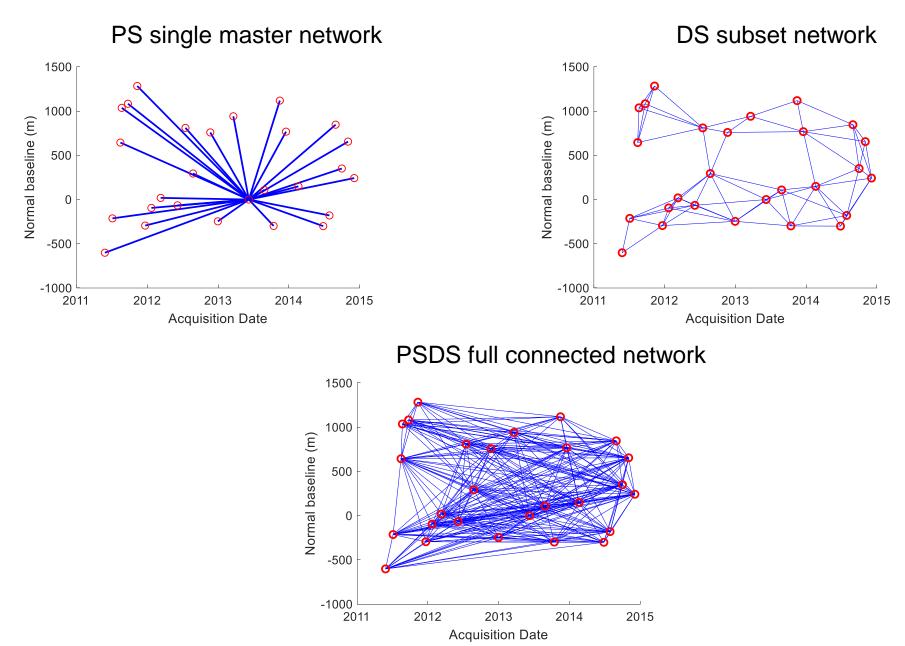
University of Leeds, FRINGE 2023, September 13th

Big Data challenge

- Massive InSAR dataset with time
- How to exploit such Big InSAR Data for long term monitoring?
- In the literature, Sequential Estimator is an initiative processing scheme to tackle distributed scatterer targets.

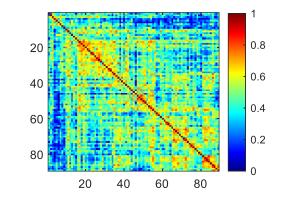

Objective

- Phase Linking technique
- Introduce a Compressed SAR (so-called ComSAR) algorithm
- TomoSAR: first open-source PSDS and ComSAR


InSAR time series approaches

- Analysis wrapped phase
- High resolution single look
- PS limitation in rural environments
- PS+DS is best for all

- Analysis unwrapped phase
- Low/high resolution multi/single look
- Works better in rural environments
- Phase unwrapping error
- Lower performance


Possible interferometric sets

Phase Linking

Suppose N single look complex images are available, all possible combinations equals to N(N-1)/2. As in PS, N-1 values are sufficient.

Phase Linking algorithm is a statistical method (maximum likelihood estimation - MLE) used in interferometry to combine multiple interferometric phases into a single equivalent single-reference.

$$\hat{\boldsymbol{\lambda}}_{\text{MLE}} = \arg\min_{\boldsymbol{\lambda}} \left\{ \sum_{n=1}^{N} \sum_{m=n+1}^{N} \gamma'_{nm} \cos(\phi_{nm} - \vartheta_n + \vartheta_m) \right\}$$

 $\boldsymbol{\lambda} = [\vartheta_1, \vartheta_2, ..., \vartheta_N]^T$ is the optimal phase that needs to be estimated from the filtered N(N-1)/2 phases.

 γ'_{nm} is defined as weight factor in the optimization.

(D. Ho Tong Minh and S. Tebaldini. Interferometric Phase Linking: algorithm, application, and perspective. *IEEE Geoscience and Remote Sensing Magazine*. pp. 2-18, ISSN: 2168-6831. DOI.10.1109/MGRS.2023.3300974. Aug. 2023.)

Phase Linking

Method Reference	Name	Weight	Descriptions
Computation			
Guarnieri and Tebal- dini [10]	MLE	γ_{nm}'	The element of Hadamard product $ \hat{\Gamma} ^{-1} \circ \hat{\Gamma}$, with the iterative solution
Ferretti et al. [11]	MLE	γ_{nm}'	Similar to Guarnieri and Tebaldini [10], with the solution by Broy den–Fletcher–Goldfarb–Shanno algorithm
Cao et al. [13]	Coherence	$\hat{\gamma}_{nm}$	The element of coherence matrix $\hat{\Gamma}$ (with equal-weighted factor $\hat{\gamma}_{nm} = 1$)
Fornaro et al. [14]	EVD	$\hat{\gamma}_{nm}\eta'_{nm}$	η'_{nm} is the element of matrix $ \eta_1 \eta_1 ^T$, where $ \eta_1 $ is the maximum eigenvector of coherence matrix $\hat{\Gamma}$
Ansari et al. [15]	EMI	γ_{nm}'	Similar to Guarnieri and Tebaldini [10], with the iterative solution which initializes as the minimum eigenvector of the matrix $ \hat{\Gamma} ^{-1} \circ$
Coherence matrix			
Ho Tong Minh and Ngo [16]	MLE	$\gamma_{nm}^{compression}$	The element of Hadamard product $ \hat{\Gamma}_{compression} ^{-1} \circ \hat{\Gamma}_{compression} ^{-1}$
Zwieback [17]	MLE	$\gamma_{nm}^{regularization}$	The element of Hadamard product $ \hat{\Gamma}_{regularization} ^{-1}$ $\hat{\Gamma}_{regularization}$

CHARACTERISTICS OF THE MAIN PHASE LINKING APPROACHES.

(D. Ho Tong Minh and S. Tebaldini. Interferometric Phase Linking: algorithm, application, and perspective. *IEEE Geoscience and Remote Sensing Magazine. pp. 2-18, ISSN: 2168-6831. DOI.10.1109/MGRS.2023.3300974. Aug. 2023.*)

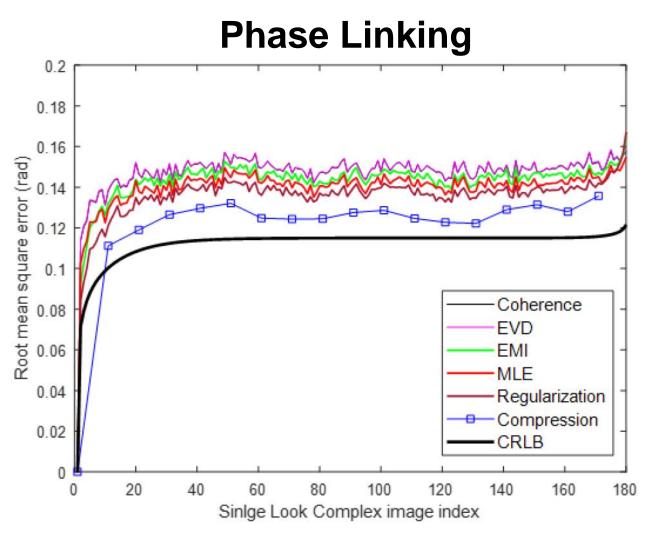
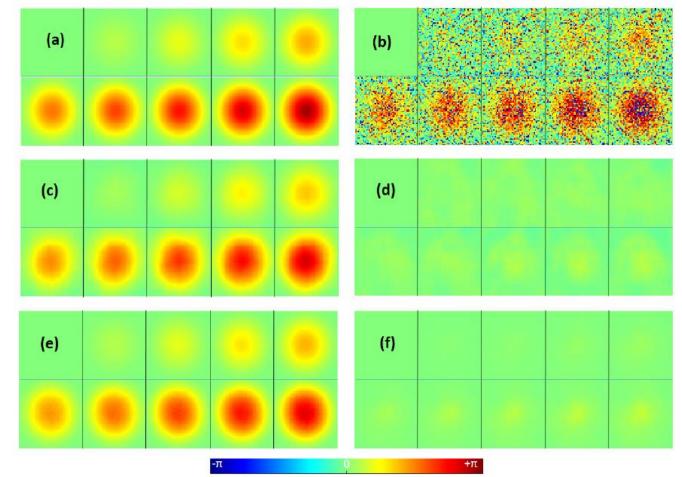


Illustration on Phase Linking performances using a Sentinel-1 temporal coherence model. The coherence is modeled as two exponential decays and a long-term coherent component. The performances are ordered to facilitate the visualization.

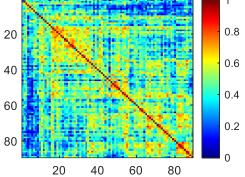

⁽D. Ho Tong Minh and S. Tebaldini. Interferometric Phase Linking: algorithm, application, and perspective. *IEEE Geoscience and Remote Sensing Magazine*. pp. 2-18, ISSN: 2168-6831. DOI.10.1109/MGRS.2023.3300974. Aug. 2023.)

Phase Linking

(a) Simulated deformed signal for interferograms using the first acquisition as the reference image.

- (b) Interferograms after adding decorrelation noise.
- (c) Results of the MLE method using all interferograms.
- (d) Residuals of the MLE method (i.e., the difference between subfigures (a) and (c)).
- (e) Results of the Deep Learning method using Unet model.
- (f) Residuals of the Deep Learning method (i.e., the difference between subfigures (a) and (e)).

Synthetic example on Phase Linking using Deep Learning.

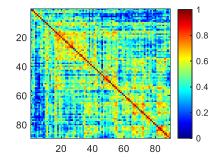


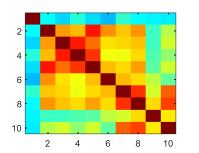
(D. Ho Tong Minh and S. Tebaldini. Interferometric Phase Linking: algorithm, application, and perspective. *IEEE Geoscience and Remote Sensing Magazine. pp. 2-18, ISSN: 2168-6831. DOI.10.1109/MGRS.2023.3300974. Aug. 2023.*)

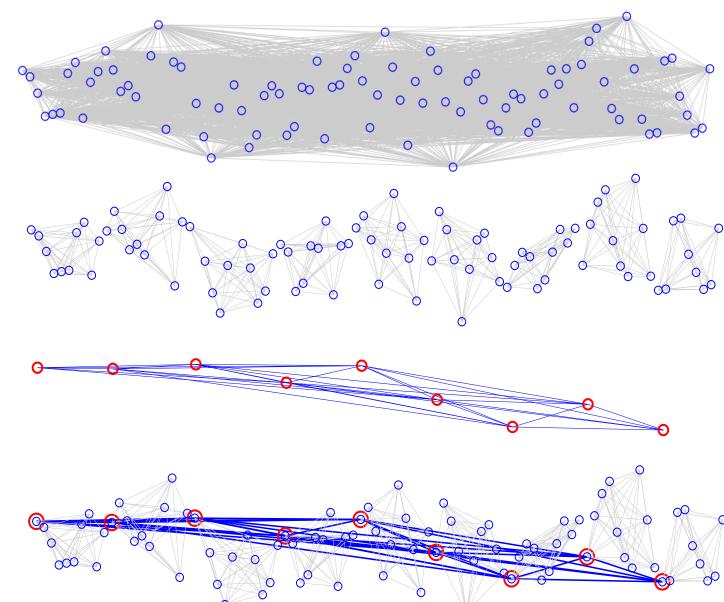
From PS to PS+DS

Identification of Distributed Scatterers

- At each range-azimuth (r,x) location, find the family of statistically homogeneous pixels (SHP) by applying the two-sample test.
- InSAR coherence matrix (the main actor): the matrix of complex correlation among all available interferometric at each range-azimuth location. $W_{nm}(r, x) = \langle y_n \ (r, x, SHP_i) \cdot y_m^*(r, x, SHP_i) \rangle$



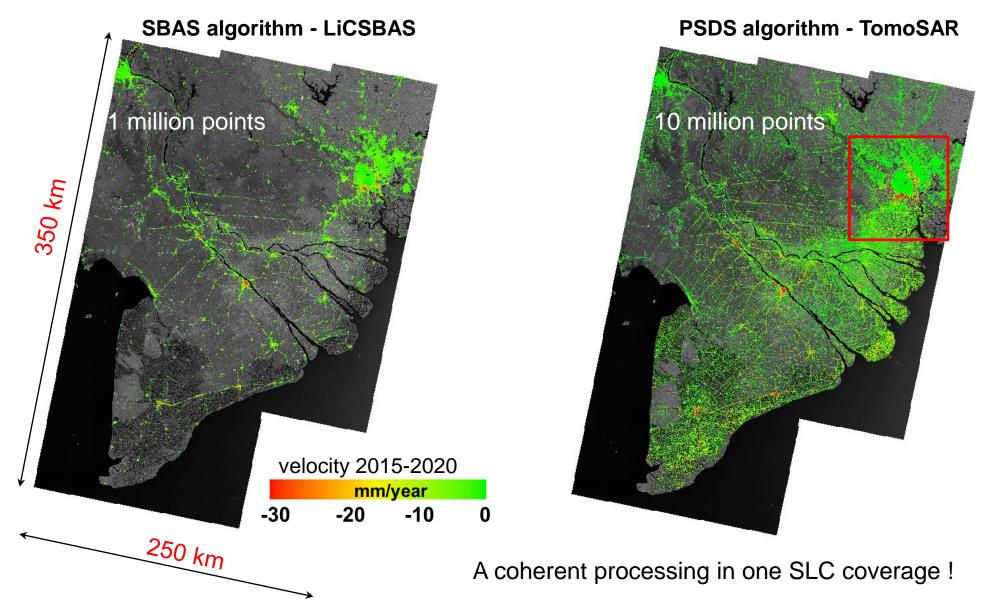

- The Phase Linking algorithm is employed to exploits all the N(N-1)/2 interferograms available from N images, in order to squeeze the best estimates from the N - 1 phases.
- Select the DS exhibiting a phase linking coherence value higher than 0.25 and substitute the phase values of the original SAR images with their optimized $\varphi_n(r, x)$ values.


When the selection of PSDS candidates is done, the traditional PS algorithm can be applied for the estimation of displacement time series of each measurement point.

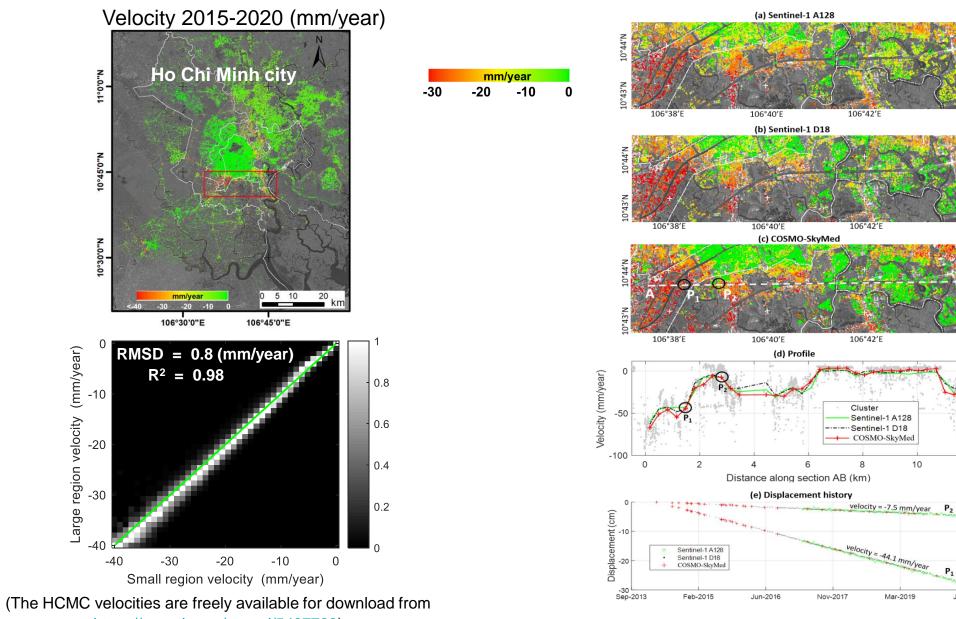
From PSDS to ComSAR

Õ

ŏ

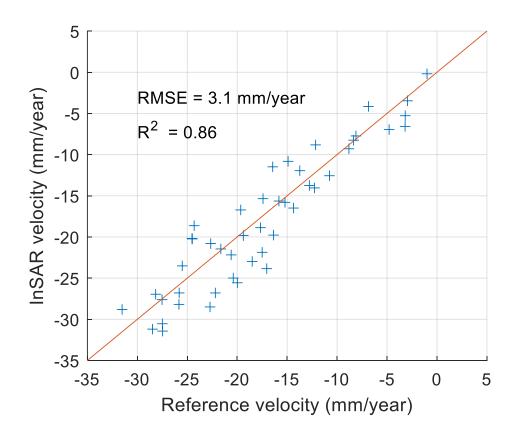

Compressed version

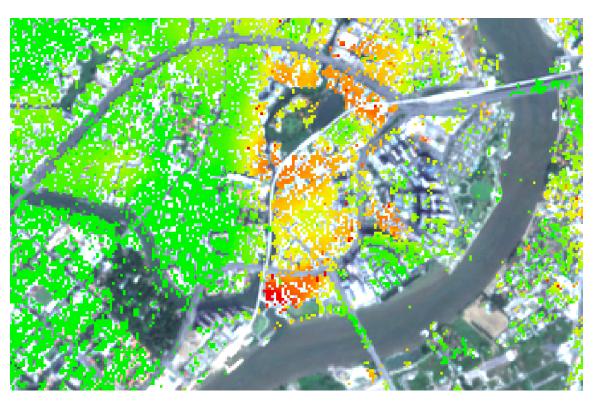
Full time series


TomoSAR: open-source PSDS and ComSAR

\leftarrow \rightarrow C O A $\overline{a^2}$ https://github.com/DinhHoT	ongMinh/TomoSAR		⊻ 😋 ≕			
Search or jump to / Pulls Iss	sues Marketplace Explore	Ċ	+• 🚱			
DinhHoTongMinh / TomoSAR Public						
St Pi	in 💿 Unwatch 🤋 👻	Fork 22 🔹 🔂 Sta	r 61 💌			
<> Code 💿 Issues 🏦 Pull requests 🕑 Actions [🗄 Projects 🕮 Wiki 🕕	Security 🗠 Insights				
⁹⁹ main ▾ Go to file	Add file - Code -	About	ŝ			
DinhHoTongMinh Update Parameter_input.m		Open-source TomoSAR p PSDSInSAR and ComSAR	_	Street - Street		
Tomography/scripts Update Parameter_input.m	3 months ago	insar comsar psdsinsar				
	10 months ago	tomosar		and a second second	ComSAR	
LICENSE Initial commit	10 months ago	Readme		All the state		
PSDS_ComSAR_R update memory example	7 months ago	4월 Apache-2.0 license 合 61 stars				
C README.md Update README.md	0	⊙ 9 watching	A Contraction			
ComSAR is friendly Big		ssing.		PSDSInSA	R	
200 images of 500x20	UU size		PSInSAR	A Start W		
- 220 GB is for PSDS		P				
- 45 GB for ComSAR				a de		

Delta-wide subsidence


Delta-wide subsidence



https://zenodo.org/record/5497723)

Jul-2020

Delta-wide subsidence

	mm/year				
-30	-20	-10	0		

Good agreement in vertical velocity between reference and InSAR velocity (2017 - 2021)

Summary

- Phase Linking algorithm is the key to handling signal decorrelations. Deep Learning approach can be a valuable tool to improve the accuracy and efficiency of the process.
- TomoSAR is the first public domain tool available to jointly handle PS and DS targets (<u>https://github.com/DinhHoTongMinh/TomoSAR</u>).

• Follow us at:

<u>https://www.youtube.com/DinhHoTongMinh</u> **VouTube** <u>https://www.facebook.com/groups/RadarInterferometry</u>

This work was supported by CNES, focused on MekongInSAR and TomoSAR-valorisation project.