Volcano Risk Reduction in Canada

Monitoring Canada's Volcanic Threat with InSAR

Drew Rotheram-Clarke¹, Melanie Kelman¹, Nick Ackerley², Yannick Lemoigne¹, Mandip Sond

¹Geological Survey of Canada, Canada; ²Canadian Hazards Information Service

CANAD

GEOLOGICAL

1842

CUALEY - COMMISSION

GEOLOGIQUE

UNCLASSIFIED - NON CLASSIFIÉ

Volcanism in Canada

Map showing location of Canadian vents (small grey triangles), lumped volcanoes used for this study (large red triangles) and volcanic belt/province divisions. GVB – Garibaldi volcanic belt; CG – Chilcotin group; AVB – Anahim volcanic belt; CQVP – Clearwater-Quesnel volcanic province; NCVP – Northern Cordilleran volcanic province.

A.M. Wilson and M.C. Kelman - GSC OpenFile 2021

Aerial view of prominent volcanic features around the Garibaldi Volcanic province. The barrier, a volcanic flow feature emanating from Mt Price with significant lava-ice interaction features and. The Black Tusk

- Threat of Volcanism is thought to be commonly underestimated
 - No Major eruptions in living memory
 - Lack of monitoring, no observations of unrest events
 - Most Canadian Volcanoes aren't shaped like classic volcanoes due to glacial interactions
- 348 Known vents Pleistocene age or younger, 54 known to be active during the Holocene
- Notable events:
 - 220BP eruption of Tseax Cone
 - 2360BP eruption of Mt Meager
 - 2007-2008 Seismic swarm at Nazko Cone
- based on evidence of past eruptions, annual probability has been estimated at 1/200 for any eruption, and 1/3333 for a major explosive eruption (Stasiuk et al., 2003)

UNCLASSIFIED - NON CLASSIFIÉ

Volcano Threat Ranking

Known vents lumped into 28 volcanic fields/complexes

 Threat scores assigned based on the methodology developed by the United
States Geological Survey (USGS) as part of a National Volcano Early Warning
System (NVEWS) (Ewert et al., 2005; Ewert, 2007; Ewert et al., 2018)

A.M. Wilson and M.C. Kelman - GSC OpenFile 2021

Volcano Threat Ranking

A.M. Wilson and M.C. Kelman – GSC OpenFile 2021

USGS recommendations minimally a remote sensing approach for volcano threats low and above

Volcano InSAR monitoring system

Front-End Dashboard UI

RADARSAT Constellation Mission (RCM)

- RCM is a constellation of 3 identical Synthetic Aperture Radar (SAR) satellites
- 3rd Generation of the RADARSAT-1 & RADARSAT-2 programs
- Launched June 12, 2019
- C-band 5.55cm wavelength
- Typically collect 3-5m strip-map mode with repeat passes varying from 4-12 days
- Owned and operated by Canadian Space Agency
- Dedication to Federal Government Scientific and Security Purposes

Guiding Scientific and Development Principles

- Align as closely as possible with the principles of Open Science and Open Government as defined by the Treasury Board of Canada Secretariat (TBS)
- Cloud Native but portable
- Sensor Agnostic
 - Build around RCM but maintain flexibility to handle RADARSAT-2, TerraSAR-X, Sentinel-1, NISAR and even commercial SAR Sensors
- Iterative development principals

Cloud Native Architecture

Routine Monitoring – Highest Threat Volcano Sites

Routine Monitoring – Highest Threat Volcano Sites

- Over 5000 interferograms and counting over 10 sites processed fully automatically this year
- Testing atmospheric modelling/correction with commercial tools as well as weather model and GNSS informed models

1st Year of observations – Subsidence of potential lava tubes - Mt Edziza

Natural Resources **Ressources naturelles** Canada Canada

Conclusions

- VRRC InSAR monitoring system running fully automatically, generating new InSAR measurements daily
- Deformation phenomena observed within the 1st year of operation
- Work remains in better atmospheric corrections, automated detection and deformation test cases

Future Directions

Natural Resources

Canada

Growing training dataset of natural fringes

Ressources naturelles

Canada

Growing number of volcano sites globally

Acknowledgements:

- ✤ Malaika Ulmi, Sonya Talwar and Jennifer Volrath Geological Survey of Canada Management
- David McCormack, Reid Van Brabant, Tim Beattie Canadian Hazards Information Service
- Giovanni Fuscina
- Sergey Samsonov and Jonathan Dudley
- Canadian Space agency

- Defence Research and Development Canada
- Canadian Center for Mapping and Earth Observation

Natural Resources **Ressources naturelles** Canada Canada

References:

- Dudley, J.P. Samsonov, S.V. 2020. The Government of Canada automated processing system for change detection and ground deformation analysis from RADARSAT-2 and RADARSAT Constellation Mission Synthetic Aperture Radar data: description and user guide, Geomatics Canada, Open File 63: 65
- Ewert, J.W., 2007. System for Ranking Relative Threats of U.S. Volcanoes; Natural Hazards Review, v. 8, p. 112-124. doi:10.1061/(ASCE)15276988(2007)8:4(112)
- Ewert, J.W., Diefenbach, A.K., and Ramsey, D.W., 2018. 2018 Update to the U.S. Geological Survey National Volcanic Threat Assessment; United States Geological Survey, Scientific Investigations Report 2018-5140, 40 p. doi:10.3133/sir20185140
- Ewert, J.W., Guffanti, M., and Murray, T.L., 2005. An assessment of volcanic threat and monitoring capabilities in the United States: framework for a National Volcano Early Warning System (NVEWS); United States Geological Survey, Open-File Report 2005-1164, 62 p. doi:10.3133/ofr20051164
- Grapenthin, R., Cheng, Y., Angarita, M., Tan, D., Meyer, F. J., Fee, D., & Wech, A. (2022). Return from dormancy: Rapid inflation and seismic unrest driven by transcrustal magma transfer at Mt. Edgecumbe (L'úx Shaa) Volcano, Alaska. Geophysical Research Letters, 49, e2022GL099464. https://doi.org/10.1029/2022GL099464
- Samsonov, S V. 2019. User manual, source code, and test set for MSBASv3 (Multidimensional Small Baseline Subset version 3) for one- and two-dimensional deformation analysis. Geomatics Canada, Open File
- Souther, J G. Geology, Mount Edziza volcanic complex, British Columbia; Geological Survey of Canada, "A" Series Map 1623A, 1988, 2 sheets,
- Stasiuk, M. V, Hickson, C.J., and Mulder, T., 2003. The vulnerability of Canada to volcanic hazards; Natural Hazards, v. 28, p. 563–589. doi:10.1023/A:1022954829974

