

Constraints on Ground Deformation Processes at the Tulu Moye Volcanic Complex, Main Ethiopian Rift

Birhan A. Kebede^{1,2}, Carolina Pagli¹, Derek Keir^{2,3}, Freysteinn Sigmundsson⁴, <u>Alessandro La Rosa¹</u>, Snorri Gudbrandsson⁵

¹ Department of Earth Sciences, University of Pisa, Italy, ² Department of Earth Sciences, University of Florence, Italy, ³ School of Ocean and Earth Science, University of Southampton, United Kingdom ⁴ Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, Iceland, ⁵ Reykjavik Geothermal Ltd, Iceland

> FRINGE 2023 University of Leeds, UK | 11 - 15 September 2023

│ 🚍 🚍 📲 🚝 🚍 📲 📲 📕 🗮 📟 📕 📲 🚝 🚝 🙀 🔤 ன 📲 📲 ன ன 🖉

The Tulu Moye Volcanic Complex

Tulu Moye volcanic complex is located within the active Main Ethiopian Rift

 Intense heat flows and hydrothermal activity make this site perfect for geothermal energy exploitation and exploration

→ THE EUROPEAN SPACE AGENCY

· e e sa

The Tulu Moye Volcanic Complex

- It is characterized by a caldera system hosting Bora, Berecha, and Tulu Moye
- NNE-striking and NNW-string cross-cutting faults dissect the caldera
- The volcano is active and deforming but the nature of the deforming source is debated

The importance of Tulu Moye

Magmatic Vs. Geothermal source

Samrock et al. (2018)

Alternating **uplift** and **subsidence** caused by a 2.5 km deep **magma body**

Alternating uplift and subsidence caused by a shallow hydrothermal source (C4)₄

We combined **Sentinel-1 time-series**, average **velocity maps**, **modeling** and independent **Magneto-Telluric** (MT) and **seismicity** data to:

- 1) Investigate the locus, magnitude and style of deformation
- 2) Constrain the causes of deformation
- 3) Build up an integrated model of the magmatic and hydrothermal system

Methods

- We used the P-SBAS (Parallel Small BAseline Subset) approach implemented into the ESA Geohazards Exploitation Platform (GEP)
- Sentinel-1 average velocity maps from ascending (087) and descending (079) orbits for the period 2014-2017
- Time-series covering 2014-2022 (desc) and 2014-2017 (asc)

InSAR average velocity maps 2014-2017

- Velocity maps shows uplift up to 40 mm/yr between the Bora, Bericha and Tulu Moye volcanoes
- The deformed zone covers about 100 km², elongated in a NW-SE direction

Kebede et al. (2023)

InSAR time-series

- Deformation began in mid-2015 with a rapid uplift phase (40 mm/yr) until 2017
- After 2017 uplift continued but **slowed down (12 mm/yr)** until 2022

8

Kebede et al. (2023)

Subsampling of velocity map using a **quadtree partitioning** algorithm (Jónsson et al. 2002)

Creation of a variance-covariance matrix (vcm) of the spatially correlated noise sampling the area at the top right corner of the velocity map

Weighted Joint inversion of ascending and descending velocity maps assuming Okada tensile dislocation source (sill)

We used a Monte-Carlo simulated annealing algorithm followed by a derivative quasi-Newton method (Cervelli et al., 2001)

Kebede et al. (2023)

10

InSAR Modeling

The best-fit model suggests a **NW-striking sill** located at a **depth of 7.7 km**

Opening rates are **0.85 m/yr** = volume change rate **8.9 x 10⁶ m³/yr**

Kebede et al. (2023)

8.19	Un آثار	certai	inties	calcı	ulatio	n							
39.064 39.068 , 19 39.064 39.068 7,5 7,5 7,5 7	8.19 8.195						Source parameters	Depth s (km)	Length (km)	width (km)	Opening (m/yr)	Strike (°)	D
10 98	98 8	10 mayhtibu					Values	7.7	8.7	1.2	0.85	55 NW	1:
39.064 39.068	8.19 8.195	7 7.5 8	1	(1120)			90% CI	7.3 - 8.1	7.9 - 9.6	1 - 1.6	0.66 - 0.89	60 - 50 NW	1
39.064 39.068 -50 -50 -50 -50 -50 -50 -10 -15 -10 -15 -50 -50 -50 -50 -50 -50 -50 -5	8.19 8.195 50 8.19 8.195 5 5 5 10 15 8.19 8.195	7 7.5 8 -50 -50 -50 -50 -50 -10 -15 7 7.5 8	8 9 10 	1 1.5 -50 -50 -50 -50 -50 -50 -50 -5	5 10 10 10 10 10 10 10 10 10 10 10 10 10				100 of t) inv he s	versi spat	ion ially	u ′
39.064 39.068	8.19 8.195	7 7.5 8	8 9 10	800 700 600	800 700 600 -60 -50	-15 -10 -5							
×10 ⁻¹⁰ 9 39.064 39.068	×10 ⁻³ ×10 ⁻³ 10 9 8 8.19 8.195	× 10 ⁻³ 9 7 7.5 8	×10 9 8 9 10	x 10 ⁻³ 10 1 1.5	×10 ⁻³ 10 9 8 8	×10 ⁻³ 10 9 -15 -10 -5	× 10 9 8 600 800		AI	l the	e pai	ram	e I
0.2 0.1 39.064 39.068 lon(°)	0.2 0.1 0.1 0.2 0.1 0 0.2 0.1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0.1 7 7.5 8 depth(km)	0.2 0.1 8 9 10 length(km)	0.2 0 1 1.5 width(km)	-60 -50 strike(°)	-15 -10 -5 dip(°)	0.2 0.1 00 800 00.(mm)	8 9 10 vol.(Km/gr) ³	(%).pail		rang	jes (0 0

Source parameters	Depth (km)	Length (km)	width (km)	Opening (m/yr)	Strike (°)	Dip (°)	Longitude (°)	Latitude (°)	Calculated Volume (m ³ /yr)
Values	7.7	8.7	1.2	0.85	55 NW	11 SW	39.066	8.194	8.9
90% CI	7.3 - 8.1	7.9 - 9.6	1 - 1.6	0.66 - 0.89	60 - 50 NW	17 - 6 SW	39.064 - 39.068	8.190 - 8.197	8 – 9.6

ising simulations correlated noise

eters remain well withing narrow of variability

12

·eesa

Discussion

- The sill locates at upper edge of the high conductive partial melt zone in MT studies
- It is ~1-2 km below the base of the cluster of micro-seismicity during 2016-2017 (Greenfield et al., 2019)
- The sill is **sub-parallel to** the nearby **NW-striking faults** and caldera rims, suggesting a **structural control**

Kebede et al. (2023)

Conclusion

- NW-oriented faults likely act to channel flow of magma into an elongate sill shape and favor fluid migration at surface
- The inflating sill is below surface manifestations, and micro-seismicity indicating it may be an **important heat source in the western part of the geothermal system**
- Alternating uplift and subsidence could be explained with inflation of magmatic system (uplift) and degassing of the hydrothermal sytems similar to other volcanoes in the MER (Aluto)

14

· elest

Thank you!

Additional Slide

Forward modeling using a Mogi source

Mogi Source parameters	Depth (km)	Volume (km³/yr)	Longtiude (°)	Latitude (°)	
Ascending values	5.65	0.0078	39.063	8.191	

