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The Tulu Moye Volcanic Complex 

• Tulu Moye volcanic complex is located 

within the active Main Ethiopian Rift

• Intense heat flows and hydrothermal 

activity make this site perfect for 

geothermal energy exploitation and 

exploration

Kebede et al. (2023)
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• It is characterized by a caldera 

system hosting Bora, Berecha, 

and Tulu Moye

• NNE-striking and NNW-string 

cross-cutting faults dissect the 

caldera

• The volcano is active and 

deforming but the nature of the 

deforming source is debated

Kebede et al. (2023)
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faults

The Tulu Moye Volcanic Complex 
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The importance of Tulu Moye 

Modified from Biggs et al. (2011) 

Tulu Moye

Envisat

Magmatic Vs. Geothermal source

Alternating uplift and subsidence

caused by a 2.5 km deep magma body

Modified from Albino and Biggs (2021) 

Alternating uplift and subsidence caused 

by a shallow hydrothermal source (C4) 

Samrock et al. (2018) 
Sentinel-1
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Objectives

We combined Sentinel-1 time-series, average velocity maps, modeling and 

independent Magneto-Telluric (MT) and seismicity data to:

1) Investigate the locus, magnitude and style of deformation

2) Constrain the causes of deformation

3) Build up an integrated model of the magmatic and hydrothermal system 
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Methods

• We used the P-SBAS (Parallel Small 

BAseline Subset) approach 

implemented into the ESA Geohazards 

Exploitation Platform (GEP)

• Sentinel-1 average velocity maps from 

ascending (087) and descending (079) 

orbits for the period 2014-2017

• Time-series covering 2014-2022 (desc) 

and 2014-2017 (asc)

Kebede et al. (2023)

Desc 079

Asc 014
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Results

• Velocity maps shows uplift up to 40 

mm/yr between the Bora, Bericha 

and Tulu Moye volcanoes 

• The deformed zone covers about 

100 km2, elongated in a NW-SE 

direction

InSAR average velocity maps 2014-2017

NE SW

NW SE

Kebede et al. (2023)
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Results

• Deformation began in mid-2015 with a rapid uplift phase (40 mm/yr) until 2017

•  After 2017 uplift continued but slowed down (12 mm/yr) until 2022

InSAR time-series

Modified from Kebede et al. (2023)
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Results

Subsampling of velocity map using a 

quadtree partitioning algorithm (Jónsson 

et al. 2002)

Creation of a variance-covariance matrix 

(vcm) of the spatially correlated noise 

sampling the area at the top right corner 

of the velocity map 

InSAR Modeling

Kebede et al. (2023)
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Results

Weighted Joint inversion of ascending 

and descending velocity maps assuming 

Okada tensile dislocation source (sill) 

We used a Monte-Carlo simulated 

annealing algorithm followed by a 

derivative quasi-Newton method 

(Cervelli et al., 2001)

InSAR Modeling

Kebede et al. (2023)
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Results

InSAR Modeling

The best-fit model suggests a 

NW-striking sill located at a 

depth of  7.7 km 

Opening rates are 0.85 m/yr 

= volume change rate 8.9 x 

106 m3/yr 

Kebede et al. (2023)
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Source 
parameters

Depth 
(km)

Length 
(km)

width 
(km)

Opening 
(m/yr)

Strike  
(°)          

Dip  (°)          Longitude (°)
Latitude 

(°)
Calculated 

Volume 
(m3/yr) 

Values 7.7 8.7 1.2 0.85 55 NW 11 SW 39.066 8.194 8.9

90% CI
7.3 -
8.1

7.9 - 9.6 1 - 1.6
0.66 -
0.89

60 - 50 
NW

17 - 6 
SW

39.064 -
39.068

8.190 -
8.197

8 – 9.6

Results

All the parameters remain well 

constrained withing narrow 

ranges of variability

100 inversion using simulations 

of the spatially correlated noise 

Uncertainties calculation

Kebede et al. (2023)
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Discussion

• The sill locates at upper edge of the 

high conductive partial melt zone in 

MT studies

• It is ~1-2 km below the base of the 

cluster of micro-seismicity during 

2016-2017 (Greenfield et al., 2019)

• The sill is sub-parallel to the nearby 

NW-striking faults and caldera 

rims, suggesting a structural 

control

MT-derived Electrocondictivity of the 

Tulu Moye area (Samrock et al., 2018)

Kebede et al. (2023)



14

Conclusion

• NW-oriented faults likely act to channel flow of magma into an elongate sill shape 

and favor fluid migration at surface

• The inflating sill is below surface manifestations, and micro-seismicity indicating it 

may be an important heat source in the western part of the geothermal system

• Alternating uplift and 

subsidence could be 

explained with inflation of 

magmatic system (uplift) 

and degassing of the 

hydrothermal sytems 

similar to other volcanoes 

in the MER (Aluto)
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Thank you!
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Additional Slide

Forward modeling using a Mogi source
Mogi Source 

parameters
Depth (km)

Volume 

(km3/yr)

Longtiude (°) Latitude (°)

Ascending values 5.65     0.0078 39.063     8.191     
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