Standardizing Soil Moisture Measurements from Cumulative InSAR Closure Phase

FRINGE 2023

Elizabeth Wig, Roger Michaelides, Howard Zebker Contact: ewig@stanford.edu

Preprint: bit.ly/wigphase

Soil Moisture Changes Soil Dielectric Constant

Soil Moisture dielectric constant from Cihlar and Ulaby 1974

Background

Surface scattering only

Surface and subsurface scattering

Stanford University

De Zan 2014, Zwieback 2015, Ansari 2021, Michaelides 2019, Zheng 2022

Scattering Model

Received radar echo is sum of surface and subsurface signals

Received echo:

$$s = s_s + s_d e^{-j \frac{4\pi}{\lambda} n \frac{d}{\cos \theta_r}}$$

 s_s, s_d random complex Gaussian, variance σ^0

$$n = \sqrt{\epsilon_r}$$

Spatial averaging (multilooking) simplifies terms

- For notation: depth $x = \frac{4\pi}{\lambda} d$ dielectric constant $\tilde{n} = \frac{n}{\cos \theta_r}$
- Then interferogram is:

$$s_{1}s_{2}^{*} = (s_{s} + s_{d}e^{-j\tilde{n}_{1}x})(s_{s}^{*} + s_{d}^{*}e^{j\tilde{n}_{2}^{*}x})$$
$$= s_{s}s_{s}^{*} + s_{s}s_{d}^{*}e^{j\tilde{n}_{2}^{*}x} + s_{d}s_{s}^{*}e^{-j\tilde{n}_{1}x} + s_{d}s_{d}^{*}e^{-j\tilde{n}_{1}x+j\tilde{n}_{2}^{*}x}$$

• Multilooking removes cross terms, results in:

$$< s_1 s_2^* > = \sigma_s^0 + \sigma_d^0 e^{-j\tilde{n}_1} x + j\tilde{n}_2^* x$$
 \leftarrow Note: needs only radar cross section and angle-adjusted dielectric constant

Closure phase messy but readily found

 $\langle s_1 s_2^* \rangle \langle s_2 s_3^* \rangle \langle s_3 s_1^* \rangle = \left(\sigma_s^0\right)^3 + \left(\sigma_s^0\right)^2 \left(\sigma_d^0\right) \left[e^{-j(\tilde{n}_2 - \tilde{n}_3^*)x} + e^{-j(\tilde{n}_1 - \tilde{n}_2^*)x} + e^{-j(\tilde{n}_3 - \tilde{n}_1^*)x}\right] + \left(\sigma_s^0\right)^2 \left$

$$(\sigma_d^0)^2 (\sigma_s^0) \Big[e^{-j(\tilde{n}_1 - \tilde{n}_2^* + \tilde{n}_2 - \tilde{n}_3^*)x} + e^{-j(\tilde{n}_2 - \tilde{n}_3^* + \tilde{n}_3 - \tilde{n}_1^*)x} + e^{-j(\tilde{n}_3 - \tilde{n}_1^* + \tilde{n}_1 - \tilde{n}_2^*)x} \Big] +$$

$$\left(\sigma_{d}^{0}\right)^{3}e^{-j(\tilde{n}_{1}-\tilde{n}_{2}^{*}+\tilde{n}_{2}-\tilde{n}_{3}^{*}+\tilde{n}_{3}-\tilde{n}_{1}^{*})x}$$

Multilooking (by finding expected value) reduces number of terms to 8 from 64

Stanford University

Needs only radar cross-section, angle-adjusted dielectric constant

This model is **nonlinear**¹

A Taylor expansion of the exponential, as:

$$e^x \cong \frac{1-x}{2} + \frac{x^2}{2} - \cdots$$

Linearizing by taking only the first two terms, the model prediction is entirely real & produces zero closure phase.

Only higher-order terms
$$\left(\frac{x^2}{2} - \cdots\right)$$
 produce an imaginary component.

Linearized model shows no closure phase

Stanford University

Why Cumulatively Sum Closure Phase?

If soil moisture changes asymmetrically (e.g., increases more rapidly than decreases), model predicts a trend or **bias¹** over time

10

- Cumulatively sum to get moisture
- Nonlinearity leads to bias with time so detrend measurements before solution

Stanford University

¹Ansari et al. 2021 found a systematic bias that may derive from this source

We remove trend to find soil moisture estimate

Anticorrelation between soil moisture and detrended cumulative closure phase

Use detrended cumulative closure phase to find soil moisture

Validation with in situ soil moisture probes State of Oklahoma, USA

- 37 soil moisture probes at named locations
- In situ measurements at 5 cm depth
- Compare to Sentinel-1 InSAR swath, multilooked to <1km pixels

Three interferograms yield one closure image

Sequence of three interferograms \rightarrow Closure Image

Scale $\pm \pi$ rad

Create sequence of interferogram triplets

Data reduction approach Cumulative sum of closure phase leads to trend

Result Detrended cumulative closure phase tracks soil moisture

17

Linear relationship between soil moisture and cumulative closure phase – enabling prediction

Soil moisture vs. detrended cumulative phase

Cumulative closure phase detrended

Estimated soil moisture at sites

Stanford University

We compared all fit lines to find a universal* trend *within this swath

Line Fit Between Closure Phase and Soil Moisture at All Sites

Mean correlation coefficient between measured and estimated soil moisture using **each site's best-fit line**

At all sites	At the 5 best- correlated sites
0.36	0.63

Mean correlation coefficient between measured, estimated soil moisture using the **universal best-fit line for all sites**

At all sites	At the 5 best- correlated sites
0.36	0.63

Accuracy appears correlated with surface type

- Best agreement in eastern area land cover types; better in pasture than crop land
- Perhaps due to neglecting interaction with vegetation

Conclusion

- Time-varying interference of surface and depth scatterers produces a closure phase
- Detrended cumulative closure phase agrees with in situ soil moisture
- Agreement varies with terrain
- Method could yield soil moisture at fine resolution

Fine-Resolution Measurement of Soil Moisture from Cumulative InSAR Closure Phase

Elizabeth Wig, Student Member, IEEE, Roger Michaelides Member, IEEE, Howard Zebker, Fellow, IEEE

Abstract—Soil moisture can vary sp: agricultural fields ($\sim 10 - 100$ m), which resolve using passive radiometric methods an opportunity for finer resolution measu the interferometric synthetic aperture 1 phase parameter is sensitive to changing

CKGROUND

water in soil can be measured avimetric soil moisture compares to the weight of dry soil, while

Preprint: bit.ly/wigphase

Stanford University

Contact: ewig@stanford.edu

Thanks for listening!

References & Data Sources

- 1. F. De Zan, A. Parizzi, P. Prats-Iraola and P. López-Dekker, "A SAR Interferometric Model for Soil Moisture," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 52, no. 1, pp. 418-425, Jan. 2014,
- 2. H. Ansari, F. De Zan and A. Parizzi, "Study of Systematic Bias in Measuring Surface Deformation With SAR Interferometry," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 59, no. 2, pp. 1285-1301, Feb. 2021,
- 3. R. J. Michaelides, H. A. Zebker and Y. Zheng, "An Algorithm for Estimating and Correcting Decorrelation Phase From InSAR Data Using Closure Phase Triplets," in *IEEE Transactions on Geoscience and Remote Sensing*.
- 4. Y. Zheng, H. Fattahi, P. Agram, M. Simons and P. Rosen, "On Closure Phase and Systematic Bias in Multilooked SAR Interferometry," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 60, pp. 1-11, 2022, Art no. 5226611, doi: 10.1109/TGRS.2022.3167648.
- 5. S. Zwieback, S. Hensley, and I. Hajnsek, "Assessment of soil moisture effects on L-band radar interferometry," *Remote Sens. Environ.*, vol. 164, pp. 77–89, Jul. 2015
- 6. McPherson, R. A., C. Fiebrich, K. C. Crawford, R. L. Elliott, J. R. Kilby, D. L. Grimsley, J. E. Martinez, J. B. Basara, B. G. Illston, D. A. Morris, K. A. Kloesel, S. J. Stadler, A. D. Melvin, A.J. Sutherland, and H. Shrivastava, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301–321.
- 7. Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 5-19.
- 8. Copernicus Sentinel data 2018-2021. Retrieved from ASF DAAC, some processing by ESA.
- 9. "Evaluation of greenness by NDVI at Oklahoma Mesonet stations." NDVI map package on Arcgis.com from user pblankenau2

Contact: ewig@stanford.edu

Backup Slides

Slight correlation of quality of fit with vegetation density (measured as NDVI)

Cumulative sum of modeled closure phase and Taylor approximation

27

Asymmetry leads to systematic bias

Trivially, a completely symmetric time series of soil moisture will produce no trend, because any positive soil moisture producing ϕ_{123} will be cancelled by the negative soil moisture producing ϕ_{321} .

$$\phi_{123} = -\phi_{321}$$

We find this principle also applies to time series with same-size steps, e.g. sine and triangle waves – no bias, and no trend in cumulative closure phase

28

Asymmetry leads to systematic bias

Bias emerges when either increase and decrease in soil moisture has larger changes relative to the other, consistently over a time series.

Here we show a trend in cumulative closure phase for soil moisture with rapid increase/slow decrease, and the opposite.

