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Soil Moisture Changes Solil Dielectric Constant

Soil Moisture and Dielectric

Dielectric Constant as a Constant Sequence, C-band
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Background
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Scattering Model

Received radar echo is sum of surface and subsurface signals

Received echo:
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Spatial averaging (multilooking) simplifies terms

n

e For notation: depth X = %d dielectric constant 7 = c0s 0

* Theninterferogramis:
5155 = (sg + sqe /M%) (s: + s;el™2¥)
= 5,55 + SeShel X 4 s steTIMX 4 5 5k e TIMX X
* Multilooking removes cross terms, results in:

Note: needs only radar cross section
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Closure phase messy but readily found
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Multilooking (by finding expected value) reduces number of terms to 8
from 64

Needs only radar cross-section, angle-adjusted dielectric constant
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This model is nonlinear?

A Taylor expansion of the exponential, as:

xZ

2

Linearizing by taking only the first two terms, the model prediction is
entirely real & produces zero closure phase.

eX =1 —x-

2
Only higher-order terms (x? — . ) produce an imaginary component.

IDe Zan 2015 finds similar results Stanford UIllVEI'Slty



Linearized model shows no closure phase

Soil Moisture Closure Phase and
Time Sequence <1078 Approx. for Small x
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Why Cumulatively Sum Closure Phase?
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If soil moisture changes asymmetrically
(e.g., increases more rapidly than decreases),
model predicts a trend or bias! over time

Cumulative Closure Phase

Closure Phase and Linear Trend Fit
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We remove trend to find soil moisture estimate

Model: Detrended Cumulative
Closure Phase and Soil Moisture1
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soil moisture
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Validation with in situ soil moisture probes
State of Oklahoma, USA

e 37 soil moisture probes at
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Three interferograms yield one closure image

Sequence of three interferograms osure Image

Triplet Closure Phase 1
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Create sequence of interferogram triplets

Triplet Closure Phase 1

Triplet Closure Phase End
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Data reduction approach
Cumulative sum of closure phase leads to trend
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Detrended cumulative closure phase tracks soil moisture
Seminole, OK: Closure Phase Seminole, OK: Detrended Cumulative Phase
and Soil Moisture over Time Closure and Soil Moisture over Time
1.5 ‘ ‘ ‘ ‘ ‘ ‘ 100 5r 11.0
o 1+ 180 § o 1 10.8 c
wv L (Vp] o
(4] — o] =
< 0.5 160 £ £ 0.5 10.6 ©
v Z v =
a2 Of 140 © 2 0 10.4
ke - o S
O = O 3
120 8 -0.5 0.2
—— Closure Phase —— Cumulative Cl. Ph.-Lin.
——Soil Moisture (FWI) —Soil Moisture
— -1

‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ 0
Jan 2019 Jan 2020 Jan 2021 Jan 2022 Jan 2019 Jan 2020 Jan 2021 Jan 2022

Stanford University



Linear relationship between soil moisture and
cumulative closure phase — enabling prediction

Seminole: Measured vs.

Seminole: Soil Moisture vs.
Estimated Soil Moisture
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Soil moisture vs. detrended cumulative phase
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Estimated soil moisture at sites

Lahoma Seminole Hinton
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We compared all fit lines to find a universal* trend

*within this swath
Mean correlation coefficient between

Line Fit Between Closure Phase measured and estimated soil moisture
and Soil Moisture at All Sites using each site’s best-fit line
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Accuracy appears correlated with surface type
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C O n C | u S | O n Fine-Resolution Measurement of Soil Moisture
from Cumulative InNSAR Closure Phase

Elizabeth Wig, Student Member, IEEE, Roger Michaelides Member, IEEE, Howard Zebker, Fellow, IEEE
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Thanks for listening!
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Slight correlation of quality of fit with vegetation
density (measured as NDVI)

Relationship between Vegetation
(NDVI) and Quality of Fit
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Cumulative sum of modeled closure phase and
Taylor approximation

Closure Phase and Cumulative Closure Phase and
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Asymmetry leads to systematic bias

Soil moisture dielectric constant sequence Cumulative Closure Phase
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Asymmetry leads to systematic bias

Soil moisture dielectric constant sequence Cumulative Closure Phase
" ‘C—band‘, Soil moisture - and Linear Trgnd Fit
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