Université d'État d'Haïti

Funded by the European Union

Surface Displacement throughout the Earthquake Cycle over Haiti's Southern Peninsula

Raimbault B., Jolivet R., Calais E., Symithe S.

FRINGE 2023 University of Leeds, UK | 11 - 15 September 2023

institut universitaire de France

European Research Council Established by the European Commis

2	Recherche
e	loppement
	E

Figure from [Symithe et al., 2015]

Hispaniola Island : a Transpressive context

How strain is partitionned along this transpressive system?

Figure from [Raimbault et al., 2023]

SAR Geodetic Data

Sentinel - 1 A/B - 12 days before 2021 earthquake then 6 days

Interseismic :

- T4/T142 --> 2014 to 08/2021 - T106/T69 --> 2014 to 03/2023 - T171/T33 --> 2014 to 03/2023

Postseismic

- T4/T142 --> 08/2021 to 04/2022

InSAR Processing and time series analysis **Coseismic analysis**

Distributed Scatterer Interferometry

Multilooked Unw. Igrams (48 x 12)

Sentinel - 1 A/B SAR images

Persistent Scatterer Interferometry

SLC **Full Resolution**

StaMPS Hooper et al., 2004

TRAIN (ERA-5) Bekaert et al., 2015

GNSS Projected in Asc. and Desc. LOS

Reference Asc. and Desc. InSAR velocities to respective LOS projected GNSS

Average Profile along the Septentrional fault

Use the redondance of PS in large profiles to estimate gaussian KDE for uncertainties

EPG fault strike-slip screw dislocation

- Bayesian estimation of the screw dislocation parameters using both LOS :
- EPG fault locking depth : 7.150 ± 3.135 km
- EPG fault slip rate : 10.063 ± 3.482 mm/yr
- Work in Progress

$$\left[\mathbf{u}(x)^{a,d} \mathbf{G} \mathbf{S} tan^{-1}\left(\frac{x-C}{D}\right)\right] + Y^{a,d} + V^{a,d}x$$

Partial Conclusions on the Interseismic Period

- Interseismic PS study agrees with the GNSS campaign data
- Modeled with a strike-slip only dislocation --> What about the convergence across the transpressive system?
- Asc. and Desc. LOS might be insensitive to possible N-S convergence, need to take the 3D GNSS
- Estimated rates in agreement with paleoseismology and model of Blocks.

Coseismic Displacement - 2021 EQ

Coseismic Model of the 2021 Haiti Earthquake

3

Figure from [Raimbault et al., 2023]

Figure from [Calais et al., 2010]

Coseismic Model - 2010 Haiti Earthquake

- Rupture of a secondary thrust running parallel to the EPG fault.
- Initiate as a thrust and evolves as a mainly strike-slip event (1/3 Dip-slip and 2/3 Strikeslip).

Partial Conclusion on the Coseismic Period

- Rupture of secondary thrust faults rather than EPG fault
- Comparable faulting event in 2010 and 2021.
- Partitioning of the transpressive system is visible during coseismic release.

Road to Postseismic

Active structure in the wake of the 2021 EQ

- Both right-lateral and left-lateral faulting type

Coseismic Fractures and Postseismic Slip on Secondary Faults

Figure from [Yin et al., 2022]

Haiti's Southern Peninsula

- Coulomb Stress Change caused by the 2021 earthquake for a vertical strike-slip E-W fault.
- To first order, areas of Coulomb stress increase match fault localization.

earthquake for a vertical strike-slip E-W fault. Se match fault localization.

Multiple faults activated

- Time series start right after the earthquake.
- Interpolation of Asc. and lacksquare**Desc. time series and** projection to the EPG fault parallel and vertical displacement.
- Systematic along strike profile for each fault with fault parallel displacements projected along fault azimuth.

- within a given length of the fault trace on each side.

Extraction of long strike fault offset displacement as a function of time • We measure the step across the fault by subtracting the mean values

Afterslip on Passive Secondary Fault

- 14 fault segments holding left-lateral or right-lateral motion.
- Checked on raw Asc. and Desc. time series.
- Logarithmic decay characteristic of afterslip, but not on the fault rupture.

l or n. SC. ries.

Afterslip on Passive Secondary Faults

- A compliant fault zone? --> Not purely elastic as characteristic time for slip
- Logarithmic decay of fault slip --> Viscous response?

Rate-and-state \bullet friction law:

$$D(t) \approx V_{pl} t_r ln \left[1 + \frac{V+V_{pl}}{V_{pl} t_l} \right]$$

$$(a - b)\sigma_{eff}^{-} = \frac{\Delta CFF}{ln\left(\frac{V+}{V_{pl}}\right)}$$

 Fault segments (a-b) ~10⁻² **Rate - Strengthening**

Drop of viscosity would be too high for a 5/10 week event --> Most likely frictional

Coulomb and Shear Stresses Redistribution

- Faulting type depend on the shear stress variations.

 Coulomb stress changes computed for each fault orientation. Fault creeping segments are in areas of Coulomb stress increase

Partial Conclusion on the Postseismic Period

- Multiple secondary faults activated.
- Frictional Rate-strengthening behaviour of all segments (a-b)~10⁻²
- Strong link between the coseismic stress redistribution and Coulomb and Shear stress variations
- Secondary faults are passive markers responding to stress variation (shear)

- creep right after the coseimic event.

Same behavior after the 2022 earthquake sequence, with fault

• We extract coseismic displacement from time series at earthquake date and estimate a rectangle earthquake source parameter.

Fault location are also in Coulomb stress increase areas.

Fault creep following the 2010 Earthquake

- \bullet with displacement rates up to 3/4 centimenters in the LOS.

Post-earthquake ALOS - 1 ascending track 138 time series (5 images)

Multiple secondary faults activated following the 2010 earthquake,

Summary and Conclusions

- The EPG fault is locked at depth while presenting a RS behaviour in its shallowest part.
- Frictional response of multiple secondary faults to the Coulomb stress redistribution --> Passive markers reacting to stress

Preliminary Horizontal and Vertical Velocities

Distributed Scatterer Analysis

73°W 72.5°W

Interseismic Model of "Blocks"

- Block Model with 2 strike-slip faults only (SEP and EPG fault)
- Block Model with 2 strike-slip faults and a thrust fault system running parallel to the northern Peninsula.

