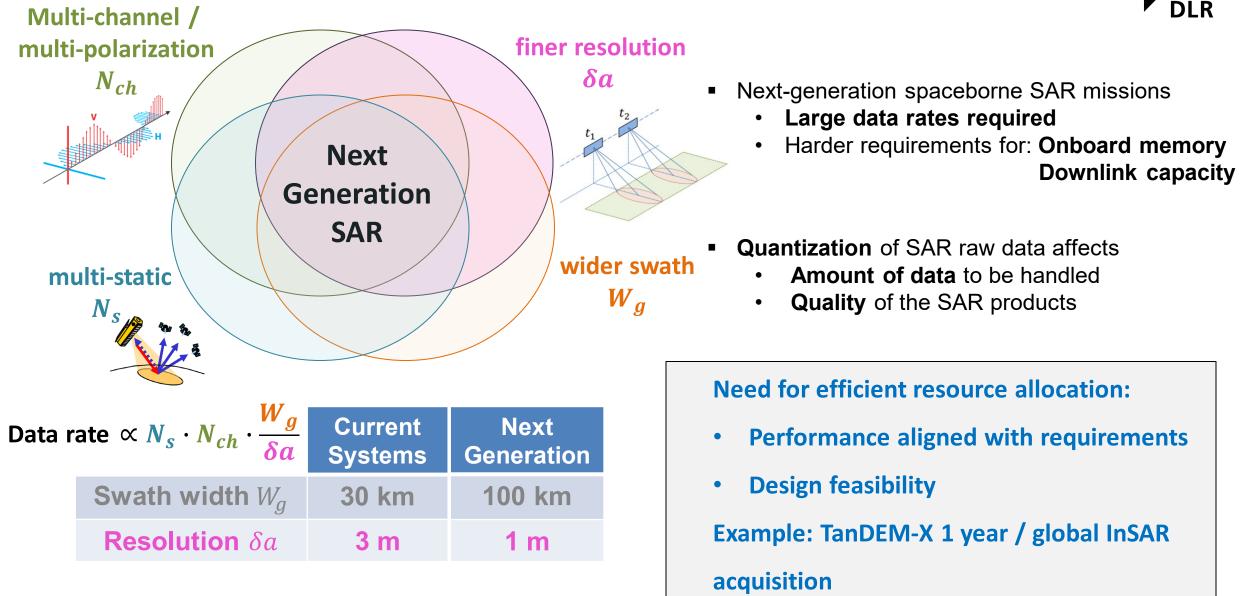
EXPLOITING ARTIFICIAL INTELLIGENCE FOR PERFORMANCE-OPTIMIZED RAW DATA QUANTIZATION IN INSAR SYSTEMS

Michele Martone, Nicola Gollin, Paola Rizzoli, Gerhard Krieger

Microwaves and Radar Institute, German Aerospace Center (DLR)

FRINGE 2023 – University of Leeds

Spaceborne SAR Missions and Data Volume Challenges

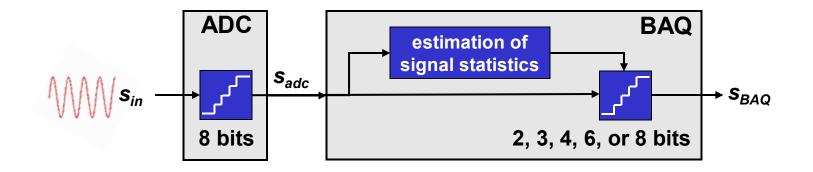


michele.martone@dlr.de, FRINGE 2023, September 15, University of Leeds

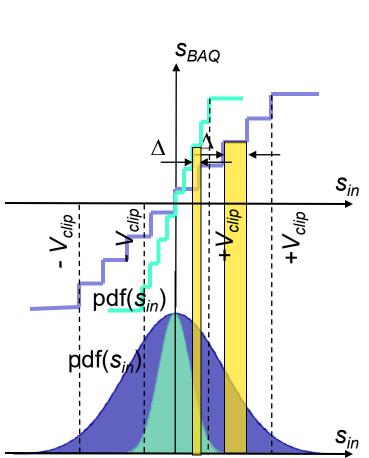
From Raw Data Acquisition to SAR Products DLR r(t) $r_q[n]$ Quantization Sampling f_s [Hz] Raw Data Storage N_b [Bits/Sample] **On Board Limited resources** Downlink 🗸 SAR Image Calibration SAR Processing & Geocoding **On Ground**

michele.martone@dlr.de, FRINGE 2023, September 15, University of Leeds

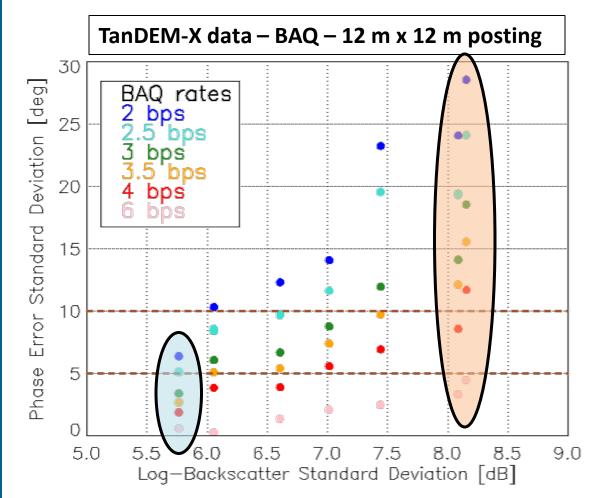
SAR Raw Data Compression – State of the Art



- Block-Adaptive Quantization: local statistics of raw data blocks to set the decision levels Δ
 - \rightarrow adapts to space-varying dynamic range of SAR data
- For SAR applications, typical BAQ rates between 2 and 6 bits/sample
- Flexible Dynamic FD-BAQ for Sentinel-1: on-board bitrate selection based on raw data statistics (large bitrates for high power blocks and vice-versa)
- Quantization as AWGN source holds for homogeneous targets



Impact of Raw Data Quantization on InSAR Performance

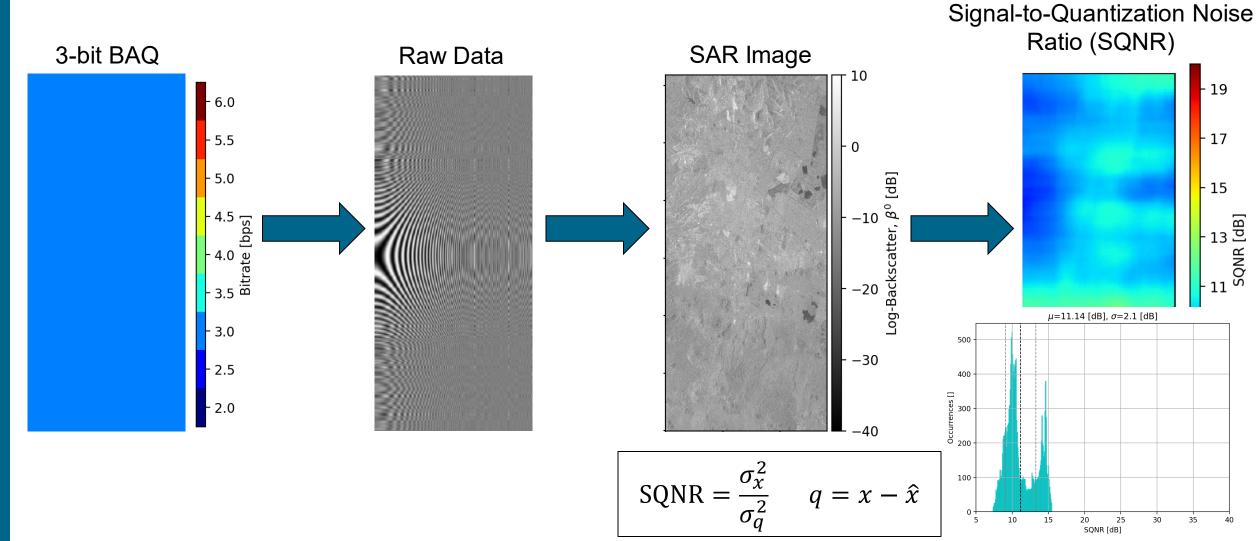


Test Site	σ_{σ^0}	bps for $\sigma_{\Lambda \sigma} = 5^{\circ}$	bps for $\sigma_{\Lambda_{\infty}} = 10^{\circ}$		
Greenland - snow & ice, flat	Homogeneous				
lowa (USA) - agricultural, flat	6.1 dB	3.5 bps	2.1 bps		
Rondonia (Brazil) - rainforest, flat	6.6 dB	3.6 bps	2.5 bps		
Death Valley (USA) - soil & rock, mountainous	7.0 dB	4.4 bps	2.8 bps		
Las Vegas - urban, flat	7.4 dB	5.1 bps	3.5 bps		
Mexico City - urban, mountainous	8.1 dB	5.6 bps	3.8 bps		
Malaysia - tropical forest, mountainous	Heterogeneous				

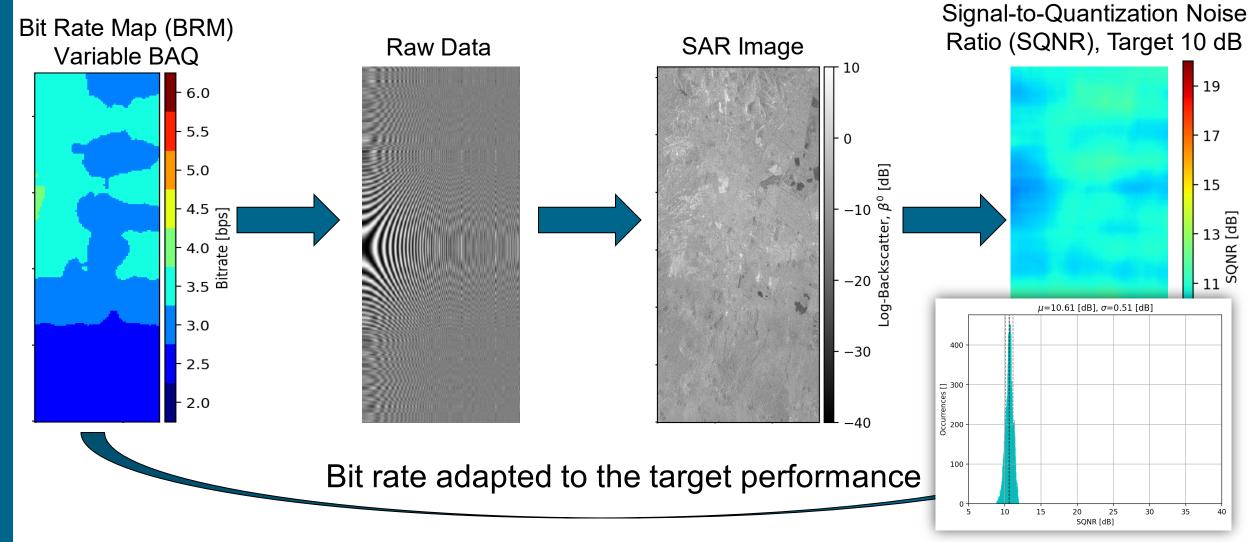
Strong impact of local backscatter characteristics on quantization performance

Impact of Raw Data Quantization on InSAR Performance Phase Errors for 2-bit BAQ 50 40 Error 30 phase Raw Data 20 2000 -10Need for advanced compression methods to adapt the SAR image degradation; -20 Benefit for e.g. DEM generation, land cover classification, information retrieval applications... -30-40.0000 4000 6000 8000 10000 12000 14000 2000

From Constant BAQ Rate...



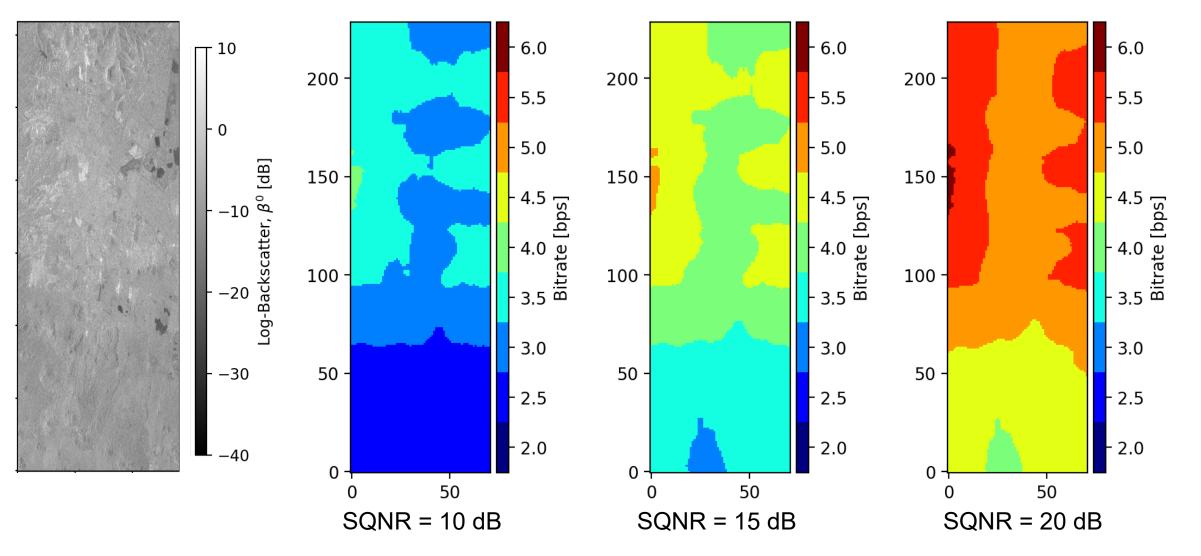
...to Performance-Optimized (PO)-BAQ^[1]



[1] Martone et al. Performance-optimized quantization for SAR and InSAR applications, TGRS 2022.

michele.martone@dlr.de, FRINGE 2023, September 15, University of Leeds

BRM Examples – Mexico City



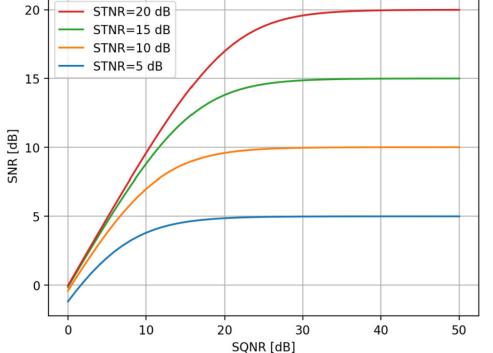
SQNR and SAR Performance

SQNR =
$$\frac{\sigma_x^2}{\sigma_{n_q}^2}$$
 $n_q = x - \hat{x}$
compressed

Impact on (total) SNR:

Relation with coherence loss:

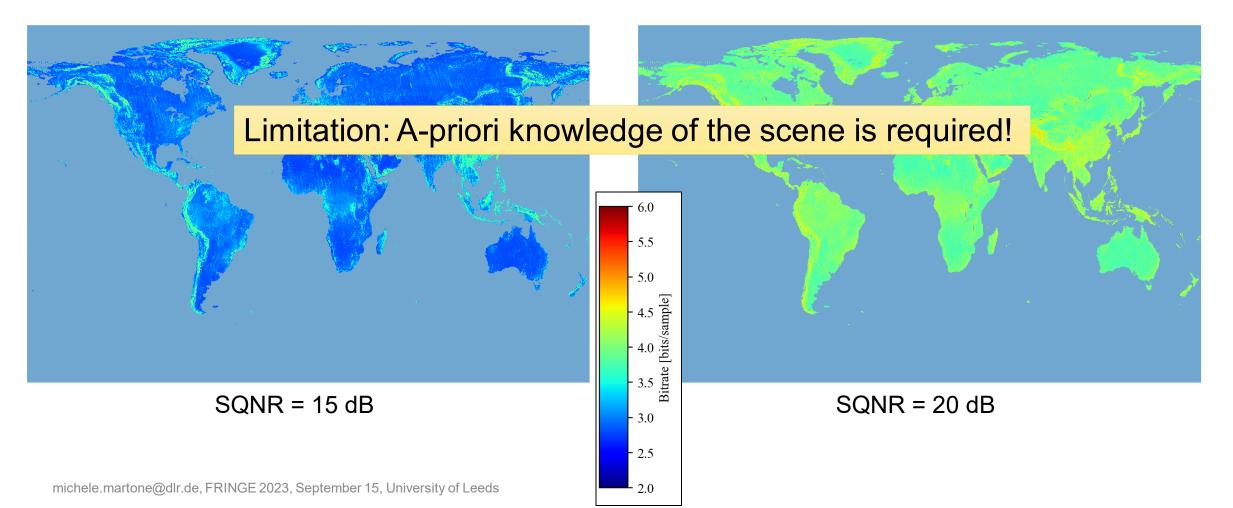
$$\gamma_q = \frac{1}{1 + \text{SQNR}^{-1}}$$



PO-BAQ – Example for Global Bitrate Allocation

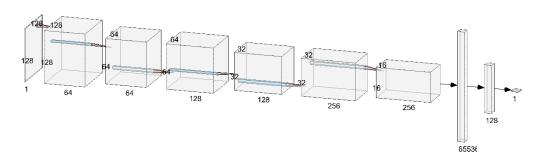
11

Global bitrate map (TerraSAR-X backscatter map as input)



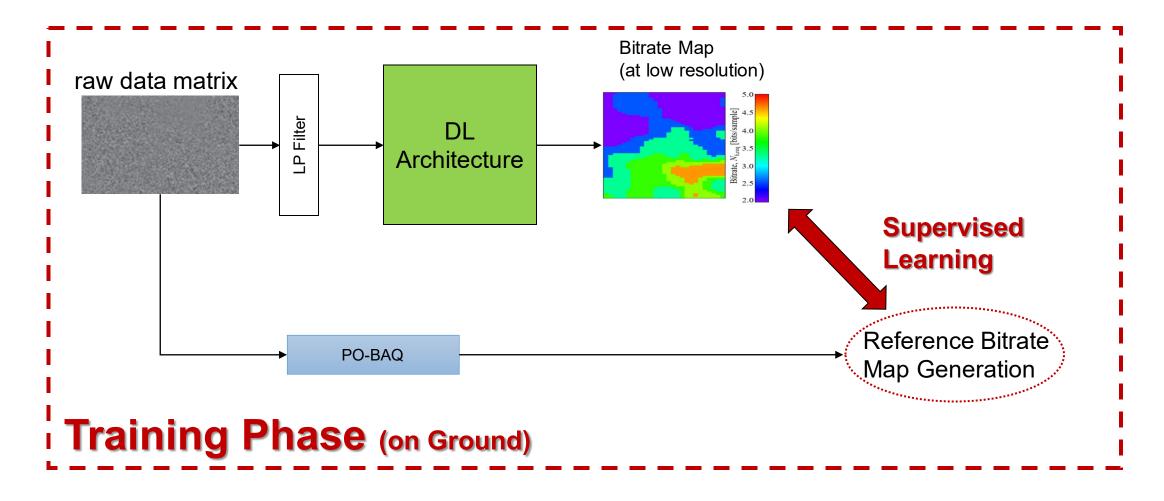
Artificial Intelligence for SAR Data Compression – ARTISTE

- Research funded by the European Space Agency (ESA/ESTEC) project "Adaptive SAR Signal Compression Through Artificial Intelligence" Contract Nr. ESA AO/1-11419/22/NL/GLC/my
- Objective: exploit Deep Learning for deriving the required bitrate for on-board raw data compression in order to control the performance in the resulting SAR/InSAR products
- CNN-based architecture for self-supervised regression:
 - 128x128 pixel patch
 - 3 Convolutional Layers (3x3)
 - Max-Pool (2x2)



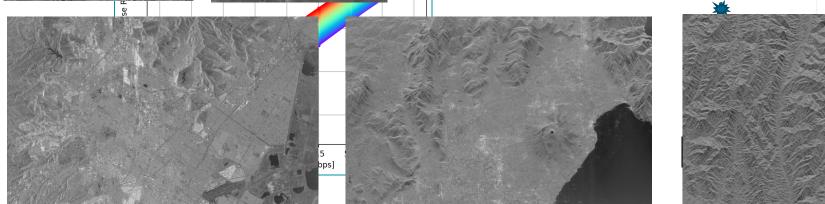
Bitrate Allocation: a Deep Learning-Based Approach

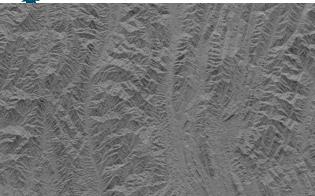
Goal: definition of a DL-architecture to derive the required bitrate <u>without</u> a-priori scene knowledge



Reference Bitrate Maps Generation

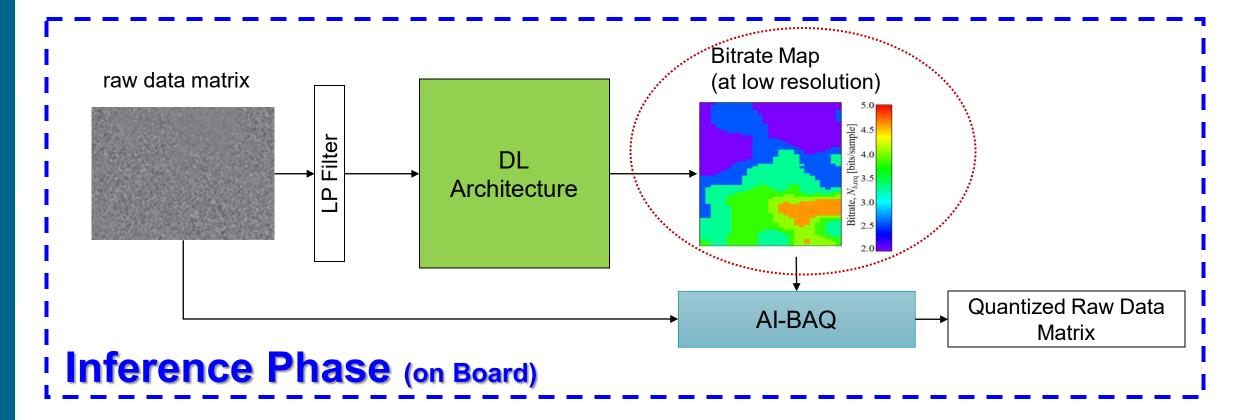
- Set of 20 TerraSAR-X and TandDEM-X uncompressed (BAQ 8 bps) SAR acquisitions used for training (16) & testing (4)
- SAR processing and SQNR maps derivation on the final SAR image for each compression rate
- Considering a given performance target (e.g., SQNR > 15 dB), the corresponding minimum bitrate satisfying the requirement is selected
- Fractional bitrates can be implemented by switching of integer rates (average performance after focusing)



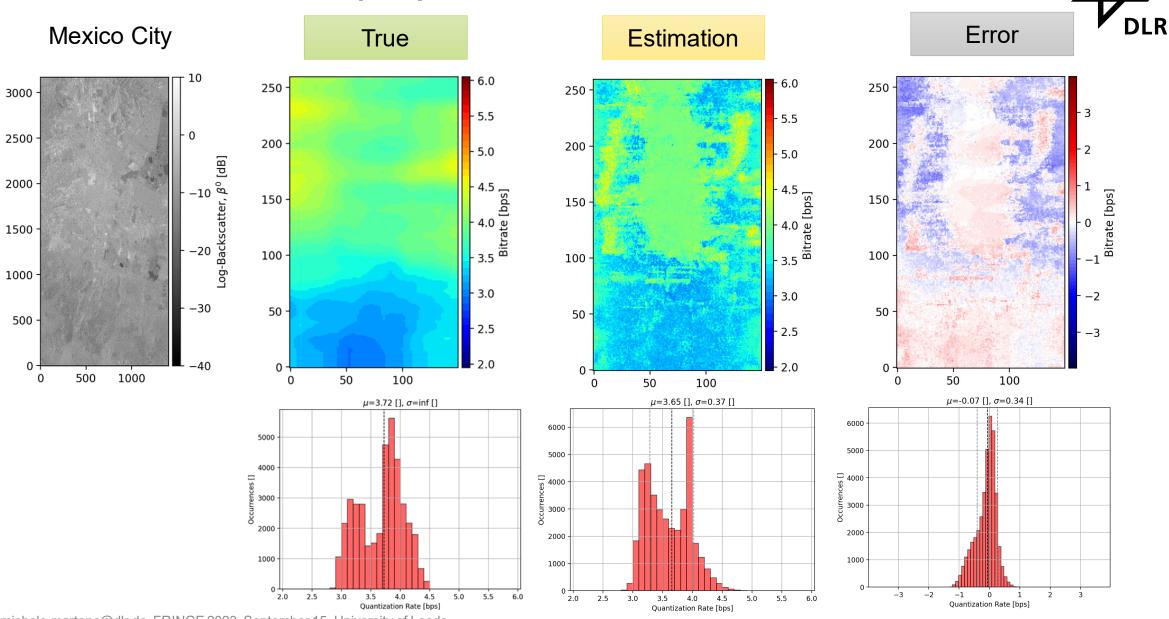


Deep Learning Approach: Inference and Results Evaluation

- At Inference the estimated BRM is generated and used for on-board compression
- For each raw data block standard BAQ is used

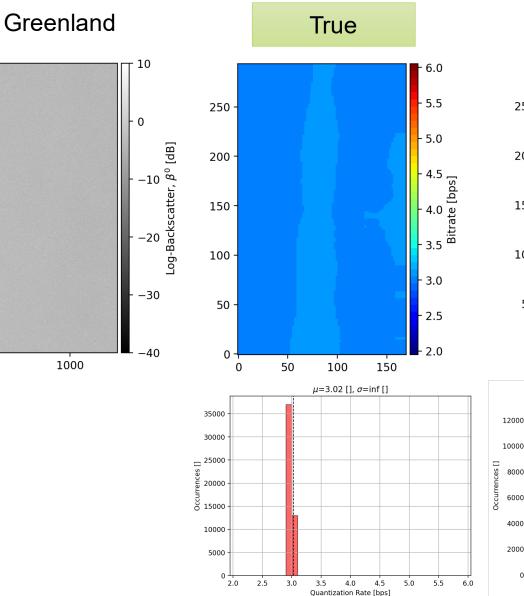


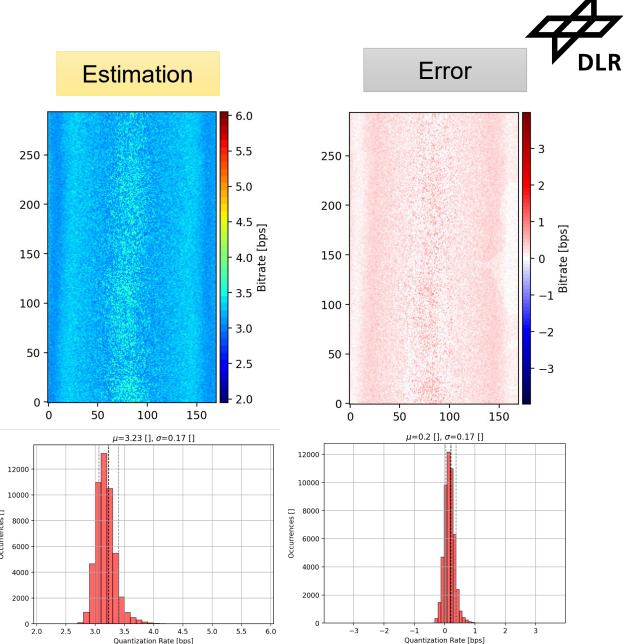
AI-BAQ – Inference (1/2)



michele.martone@dlr.de, FRINGE 2023, September 15, University of Leeds

AI-BAQ – Inference (2/2)





michele.martone@dlr.de, FRINGE 2023, September 15, University of Leeds

17

3500

3000

2500 -

2000

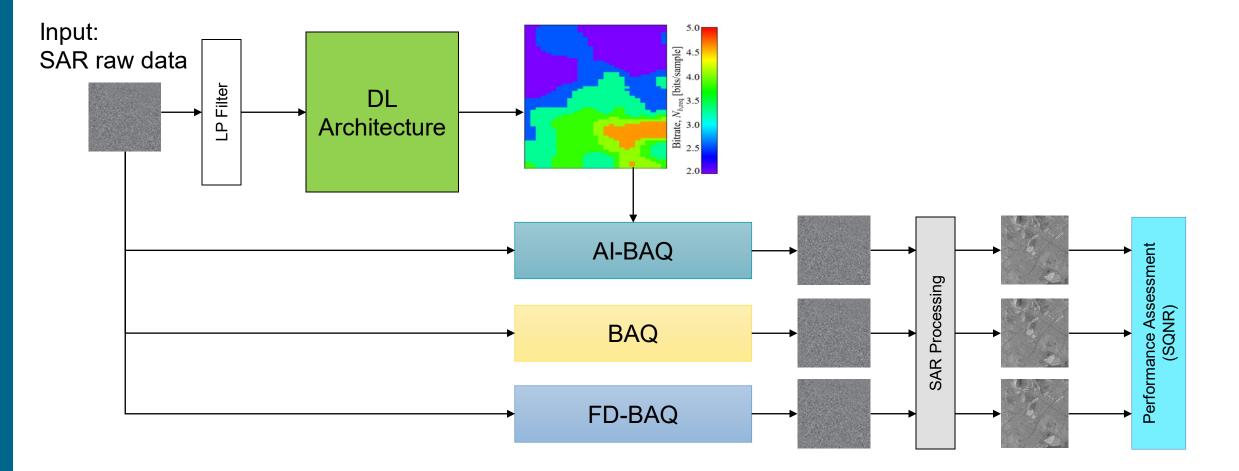
1500 -

1000 -

500

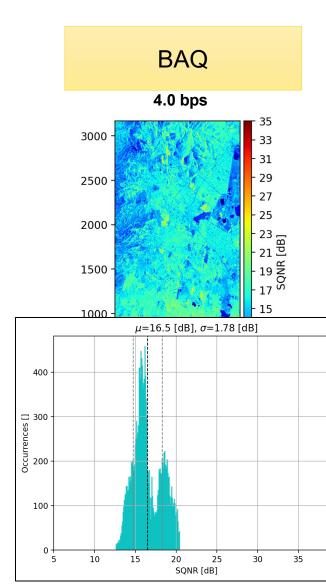
0 +

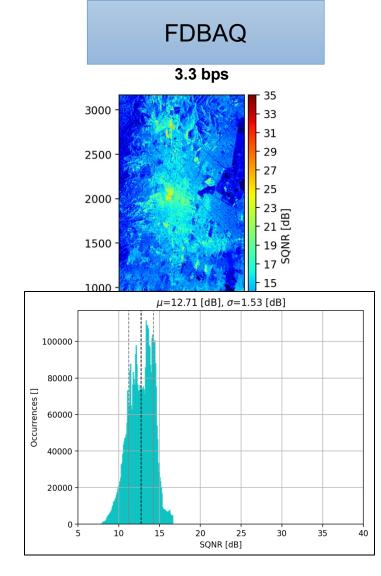
SAR Performance Assessment

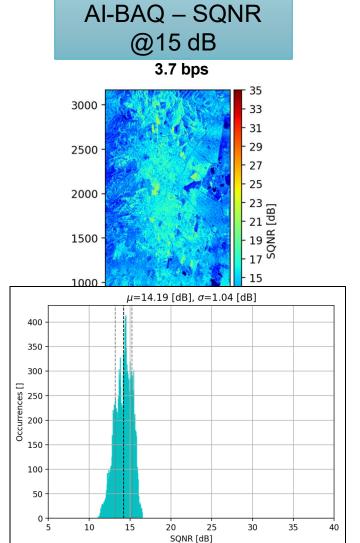


SAR Performance Results – Mexico City

40







michele.martone@dlr.de, FRINGE 2023, September 15, University of Leeds

Performance Comparison & Data Volume Reduction

SQNR = 10 dB (μ ± σ) / mean bitrate	2-bit BAQ	FDBAQ		AI-BAQ	
Greenland (Snow/Ice)	9.7 dB ± 0.2 dB	14.8 dB ± 0.1 dB	3.1 bps	11.9 dB ± 0.4 dB	2.4 bps
Uyuni (Soil & rock)	9.5 dB ± 0.2 dB	15.1 dB ± 0.3 dB	3.2 bps	10.5 dB ± 0.7 dB	2.2 bps
Las Vegas (Urban)	7.7 dB ± 1.3 dB	12.6 dB ± 1.7 dB	3.1 bps	9.8 dB ± 1.1 dB	2.4 bps
Mexico City (Urban + Topography)	6.6 dB ± 1.4 dB	12.7 dB ± 1.5 dB	3.3 bps	9.6 dB ± 0.9 dB	2.7 bps

SQNR = 15 dB ($\mu \pm \sigma$) / mean bitrate	3-bit BAQ	FDBAQ		AI-BAQ	
Greenland (Snow/Ice)	15.1 dB ± 0.1 dB	14.8 dB ± 0.1 dB	3.1 bps	15.6 dB ± 0.1 dB	3.3 bps
Uyuni (Soil & rock)	15.0 dB ± 0.4 dB	15.1 dB ± 0.3 dB	3.2 bps	15.4 dB ± 0.7 dB	3.2 bps
Las Vegas (Urban)	12.9 dB ± 1.6 dB	12.6 dB ± 1.7 dB	3.1 bps	14.3 dB ± 1.2 dB	3.4 bps
Mexico City (Urban + Topography)	11.6 dB ± 1.8 dB	12.7 dB ± 1.5 dB	3.3 bps	14.2 dB ± 1.0 dB	3.7 bps

Performance Comparison & Data Volume Reduction

SQNR = 10 dB ($\mu \pm \sigma$) / mean bitrate	2-bit BAQ	FDBAQ		AI-BAQ	
Greenland (Snow/Ice)	9.7 dB ± 0.2 dB	14.8 dB ± 0.1 dB	3.1 bps	11.9 dB ± 0.4 dB	2.4 bps
Uyuni (Soil & rock)	9.5 dB ± 0.2 dB	15.1 dB ± 0.3 dB	3.2 bps	10.5 dB ± 0.7 dB	2.2 bps
Las Vegas (Urban)	7.7 dB ± 1.3 dB	12.6 dB ± 1.7 dB	3.1 bps	9.8 dB ± 1.1 dB	2.4 bps
Mexico City (Urban + Topography)	6.6 dB ± 1.4 dB	12.7 dB ± 1.5 dB	3.3 bps	9.6 dB ± 0.9 dB	2.7 bps

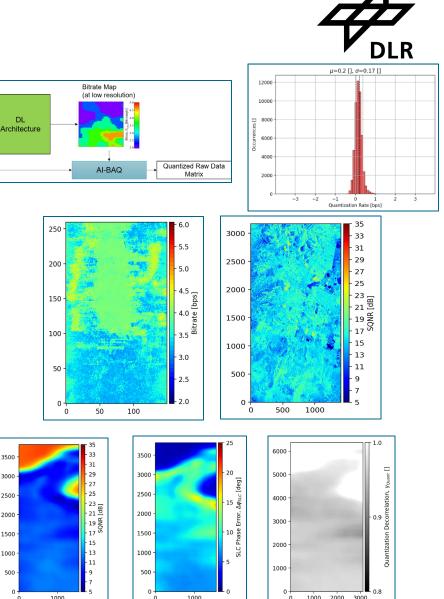
AI-BAQ achieves more targeted performance w.r.t. BAQ and FDBAQ for all cases
Assuming a requirement SQNR = 10 dB: About 1 bps less w.r.t. FDBAQ
→ data volume reduction of up to ~30%

AI-BAQ – Conclusions and Outlook

- Novel AI-based SAR data compression method for joint optimization of datarate and SAR image performance
- No a-priori knowledge of the backscatter/scene required
- **Combined** use of AI-BAQ with other **data volume reduction** approaches (e.g. transform/predictive coding) possible
- Promising results w.r.t. state-of-the-art compression methods; potential improvements (e.g. CNN architecture) and HW implementation currently investigated
- Method to be tested on other performance parameters (e.g. radiometry & phase errors)

SQNR

aw data matrix



 $\Delta \varphi_{error}^{SLC}$

YQuant

