Enabling 3D Deformation Monitoring with the CHORUS SAR Constellation

Fernando Greene Gondi, Jayson Eppler, Ron Caves and MDA CHORUS TEAM Fringe
2023.09.14

CHORUS

TABLE OF CONTENTS

CHORUS MISSION OVERVIEWPG3CHALLENGES MONITORING 3D DEFORMATION PG 7
SIMULATIONS AND 3D DECOMPOSITIONS PG 14
SUMMARY PG 24

SECTION

CHORUS MISSION OVERVIEW

CHORUS Constellation Mission

- Building upon the substantial heritage of the RADARSAT program, MDA is developing CHORUS, a next generation commercial SAR mission to
- Provide continuity for current users of RADARSAT-2
- Better address emerging needs of the geointelligence market
- The CHORUS constellation is a dual-frequency mission including both a C-band and an X-band SAR satellite

CHORUS-C

- RADARSAT 4th generation
- Designed, built, owned and operated by MDA
- Broad area coverage, up to 700 km swath
- Right- and left-look
- Dual-aperture on receive ($2 \times \mathrm{RCM}$)
- Stepped receive: lower NESZ \& ambiguities
- Fast tasking (1 hour) and NRT delivery (30 min)
- Imaging 20 minutes per orbit
- 2×300 Mbps downlink

CHORUS-X

- Supplied by leading commercial X-band SAR provider
- Sub-metre resolution
- Right- and left-look
- Trailing CHORUS-C ground track by 1 hour
- Tip and cue from CHORUS-C
- Very fast tasking (<< 1 hour) \& NRT delivery (30 min)
- Imaging 3 minutes per orbit
- 500 Mbps downlink

CHORUS Orbit

Parameter	Value	Comment
Altitude	$\sim 600 \mathrm{~km}$	Similar to RCM
Inclination	53.5°	Medium inclined prograde (W to E) non-sun- synchronous orbit. Access to ± 62.5 deg latitude.
Local time at nadir	Variable	Decreasing by about 20 minutes per day
Repeat cycle	9.85 days (147 orbits) $)$	Much shorter than RADARSAT-2 (24 days). Balances access with revisit time, incidence angle diversity and change detection latency.
Phasing	1 hour	Same ground track but with CHORUS-X trailing CHORUS-C by 1 hour

- The novel orbit inclination and varying local time change how and when we observe the world with SAR

CHORUS Beam Modes

Right-looking geometry shown, left-looking is also supported

CHORUS-C InSAR Supported Modes

Beam Mode		Swath width	Swath positions	Resolution	$\begin{aligned} & \text { Looks } \\ & \text { (Rg x Az) } \end{aligned}$	Incidence angle range	Sensitivity (max NESZ)	Polarization
Spotlight		$10 \mathrm{~km} \times 7 \mathrm{~km}$	128	$3 \mathrm{~m} \times 1 \mathrm{~m}$	1	$\begin{gathered} 24.5^{\circ} \text { to } \\ 63.9^{\circ} \end{gathered}$	$-17.5 \mathrm{~dB}$	SP/DP/CP
Stripmap	3 m	50 km	26	3 m	1	$\begin{gathered} 24.5^{\circ} \text { to } \\ 63.9^{\circ} \end{gathered}$	$-20 \mathrm{~dB}$	SP/DP/CP
	5 m	$100 \mathrm{~km}-180 \mathrm{~km}$	20	5 m	1		$-21 \mathrm{~dB}$	
	8 m	120 km - 180 km	6	8 m	1		$-23 \mathrm{~dB}$	

CHORUS-X InSAR Supported Modes

Beam Mode	Swath width	Resolution	Sensitivity	Polarization
Spotlight	$5 \mathrm{~km} \times 5 \mathrm{~km}$	$0.5 \mathrm{~m} \times 0.25 \mathrm{~m}$	-18 dB to -15 dB	VV
Stripmap	30 km	3 m	-21.5 dB to -20 dB	VV

CHORUS performance numbers are preliminary and subject to change SP - Single polarization, DP - Dual polarization, CP - Compact Polarization

CHALLENGES MONITORING 3D DEFORMATION

InSAR Limitation

- InSAR can only measure a onedimensional motion along radar line-ofsight, leading to:
- Challenging Interpretation of results
- Ambiguous modelling processes
- Insufficient information for full 3D displacements of interest to stakeholders

V: Vertical, N: North, E: East

Partial Solution

- To retrieve three motion components, at least three non coplanar LOS vectors are needed
- Can be achieved using ascending and descending orbits, different incidence angles, and left \& right observations
- Almost all SAR images are acquired using right-looking and near-polar orbits
- High East-West deformation sensitivity
- Very low North-South deformation sensitivity

Results for each stack can be combined to obtain eastwest and vertical deformation calculated

Lack of Angular Diversity
Three non coplanar LOS vectors don't solve the issue

Orbits	3		Orbits	3
Satellites	RS2,RS2,RS2	2 Ascending Right + Descending Right	Satellites	RS2,RS2,RS2
Pass	A, D, A		Pass	A, D, A
Look	R,R,R		Look	R,R,L
Heading	$350^{\circ}, 190^{\circ}, 348^{\circ}$		Heading	$350^{\circ}, 188^{\circ}, 348^{\circ}$
		Ascending Right \& Left + Descending Right		
Incidence	$45^{\circ}, 42^{\circ}, 22^{\circ}$		Incidence	$37^{\circ}, 47^{\circ}, 40^{\circ}$
East	1.0 mm/yr		East	1.0 mm/yr
North	19.3 mm/yr	1	North	5.6 mm/yr
Vertical	2.6 mm/yr		Vertical	$0.9 \mathrm{~mm} / \mathrm{yr}$
	$\sigma_{L O S}^{2}=1 \mathrm{~mm} / \mathrm{yr}$			$\sigma_{\text {LOS }}^{2}=1 \mathrm{~mm} / \mathrm{yr}$

Potential Benefits of CHORUS-C to Retrieve 3D Deformation Field

- Hypothesis: the inclined orbit (53.5°) of CHORUS-C provides a wider diversity of lines of sight (vs SSO orbits SARs) that can better enable 3D deformation monitoring at low to mid latitudes
- Goal: demonstrate this via simulation at different latitudes
- Process:
- Use RADARSAT-2 and CHORUS-C orbits
- Selected sites at different latitudes with RS2 data available $+\mathrm{CH}-\mathrm{C}$ orbits
- Build models of deformation
- Project model to line-of-sight + noise
- 3D Decomposition

- Assumptions:

- Phase stable, zero Doppler centroid, zero spatial baseline, ...

Heading Variations vs Incidence Angles (Latitude: 48)

SIMULATIONS AND 3D DECOMPOSITIONS

Simulated Deformation

A point source is utilized to understand the impact of using multiple viewing geometries to retrieve the 3D deformation field

Blue moves toward the east and red towards the west

Simulated Deformation

Blue moves toward the south and red towards the north

Red area is subsiding

Introduced short/intermediate wavelength noise using an isotropic 2D fractal surface with a power law behavior ${ }_{1}$ Tested different noise levels: 1 mm to 5 mm (MAD)

Decomposed Deformation (2 Orbits)

Decomposed Deformation

Noth-South

Residuals

0.5 cm residual -0.5 cm

Use, duplication or disclosure of this document or any of the information or images contained herein is subject to the restrictions on the title page of this document. COPYRIGHT ©2023 MDA.

Decomposed Deformation

Noth-South

3 orbits

CH Asc 25 L + CH Des 52 R + CH Des 60 L

4 orbits

CH Asc $25 \mathrm{~L}+\mathrm{CH}$ Des $52 \mathrm{R}+$ CH Des 60 L + CH Asc 52 R

4 orbits
RS2 Asc 46 R + RS2 Des 29 R + CH Asc $25 \mathrm{~L}+\mathrm{CH}$ Asc 52

Decomposed Deformation

Noth-South

$3 \mathrm{~cm} \square$ vertical -3 cm

Residuals

Residual Vertical

$0.5 \mathrm{~cm} \quad$ residual -0.5 cm

3 orbits

CH Ac $47 \mathrm{~L}+\mathrm{CH}$ Bes $47 \mathrm{R}+$ CH Bes 47 L

3 orbits
RS2 Ac $40 R+$ RS 2 Les $42 R+$ CH Les 47 R

4 orbits

RS2 Ac 40 R + RS 2 Pes 42 R + CH Les 47 R + CH Les 56 L
-

Impact of Noise in 3D Decomposition

Max simulated horizontal deformation 1 cm , Max simulated vertical deformation 2.65 cm

Distribution of Estimated Precisions (σ) - All Possible Viewing Geometries

RS2 only with Left and Right Looking 3 Orbits

CHORUS-C and RS2 Left and Right Looking 3 Orbits

CHORUS-C and RS2 Left and Right Looking 4 Orbits

[^0]Example Strike Slip Fault - Latitude 48° RS2 ASC R + RS2 DES R + CH DES R

Simulated Motion

Decomposed 3D Deformation

$1.5 \mathrm{~cm} \quad 3 \mathrm{~cm}$

Observations

- 3+ viewing geometries needed to obtain 3D deformation measurements
- High angular diversity is key
- More viewing geometries (>3) can be beneficial
- Advantages observed using mid-inclined and SSO orbits
- High precisions in all components when combining mid-inclination and SSO orbits, specially at mid-latitudes
- Best N-S precisions when using only mid-inclined orbits (different combinations of right/left and Asc/Des)
- Higher precision than only using 3 SSO orbits (including right/left and Asc/Des)
- Highest precision of N-S component observed at mid-latitudes
- Can be more accurate than E-W (mid-latitudes)
- N-S precision decreases toward low latitudes
- Overall, E-W component still remains more precise
- N-S component is more affected by noise (low latitudes)
- Horizontal deformation signal easily contaminated by noise
- Noise impact dependent on geometry configuration and latitude
- Can be improved by including optimized geometries
- $3+$ viewing geometries will enable measurements of pure horizontal motion (e.g. strike slip faults)

Summary

- Current missions don't provide enough angular diversity to accurately estimate 3D deformation
- CHORUS-C will provide broader angular diversity to better retrieve N-S deformation
- Improved N-S precision at mid-to-low latitudes
- Benefits observed by combining sun-synchronous orbits and mid-inclination orbits (complementary)
- Proper acquisition planning will be required to obtain most benefits
- e.g. minimize impact of noise, temporal offset, higher precision in N-S component

THANK YOU

CONTACT INFO:

MDA
fernando.greenegondi@mda.space

[^0]: Precision for the estimated displacement obtained using error propagation law as in Wietske Brouwer (2021)

