FINE-SCALE MEASUREMENT OF CREEP ALONG THE SAN ANDREAS FAULT FROM REMOVAL OF DECORRELATED PIXELS IN INSAR TIME SERIES: A PROPOSED DATA FLOW FOR HIGH-VOLUME INSAR SYSTEMS

Howard Zebker Stanford University

Automated production of InSAR time series

- Many sources for InSAR time series today
- Data volumes are large, scenes are many, interferograms are many•(many-1)/2
- Production from LO/L1 radar scenes can require much individual fine tuning
- Need routine generation of time series with minimal intervention
- Not quite ready for ML to solve this
 - Training sets too small
 - A good project for a future student

Goal

- Today we are solving the engineering problem, not the scientific one
- That problem:
 - How do we generate InSAR time series in ways that are routine and automatic
 - Very little human interaction
 - Results robust and reasonably optimized for quality and speed

User specifies

Lots of pieces exist already

- Backprojection for geocoded single look complex images (Zebker 2017)
- SBAS time series solutions (Berardino 2002)
- PS filtering for noise reduction (Hooper 2006)
 - MLE candidates (Agram 2007)
 - Cosine similarity filtering (Wang and Chen 2022)
- Robust phase unwrapping from SNAPHU (Chen 2002)
- Tropospheric artifact reduction (Zebker 2021)
- Here we combine these steps for a robust data flow that requires little to no tuning
- Now available as a standalone system, plan to integrate into ISCE software

Data flow

•Nearly all parameters fixed in nominal sequence

Processing details

- Prefer LO initial products with backprojection to geocoded SLC
- PS filtering
 - First pass MLE with SCR threshold = 2
 - Downselect candidate PS thru cosine similarity (Wang and Chen, 2022)
 - Three iterations of cosine similarity, filling missing pixels
 - Spiral interpolation back to all geocoded pixel locations
- SNAPHU out of box with MCF initialization
- Atmospheric artifact removal regression vs height
- Unweighted SBAS using maximum temporal baseline with minimal aliasing

Candidate PS: use MLE, overselect here

Remove false positives with cosine similarity

Fill in misses with cosine similarity

Interpolate holes and apply SBAS

Accuracy: Check vs GPS

Errors: SBAS-only vs PS

Remove troposphere via elevation regression

Select coherent points

Remove height dependence

Correction applied to each interferogram

Before correction

After correction

Two application examples

- Creep rate along San Andreas Fault (SAF) creeping section
 - Goal: finer spatial scale than is available from current GPS
- Subsidence due to water withdrawal from Carrizo-Wilcox aquifer near San Antonio, TX
 - Goal: observation in highly vegetated area

SAF creeping section may accommodate strain and lessen risk

Carrizo-Wilcox aquifer – a vegetated terrain

SBAS/PS SAF creep rate solutions

Fine resolution solution for creep rate 2018-19

Right lateral slip rate along creeping section

Averaging boxes for InSAR rate measurement

GPS coverage along creeping section

Aquifer subsidence, SE of San Antonio, TX

SBAS-only solution exhibits false signature from multiple phase unwrapping errors

PS filter solution shows clear aquifer subsidence signal

Conclusions

- Developed a robust and accurate software architecture
 - Use as standalone soup to nuts package
 - Plan to integrate within ISCE (3? 4?)
- Standardized parameter selection for consistency could be edited
- Performance (untuned) yields finer spatial result than GPS at cm- to mm-level
- Routine application reveals deformation in highly decorrelating areas
- Future work could develop context-sensitive parameters
- With a large enough data set might enable ML parameter selection and data interpretation