ALUS Toolbox: GPU-Accelerated Sentinel-1 and ALOS PALSAR Processing Tools

Martin Jüssi, CGI Estonia FRINGE 2023, Leeds, UK 11.09.2023

CGI

Outline

- Background
 Software functionality overview
 Processing tools and performance
 Latest developments and opportunities enabled
- Conclusion

GPU technology

- GPU Graphical Processing Unit
- Traditional usage:
 - Video rendering
 - Gaming
- Contemporary usage:
 - AI model training
 - Crytocurrency mining
 - Various computational tasks

GPU technology: performance trends

© 2023 CGI Inc.

Meanwhile in Earth Observation...

ALUs Toolbox introduction

- ALUs Toolbox (Arithmetic Logic Units) an open-source toolset leveraging GPU technology to <u>accelerate</u> SAR and optical EO data processing
- <u>https://github.com/cgi-estonia-space/ALUs</u>
 - Open source, free for commercial use

GPU-Accelerated EO processing toolbox by CGI

- Expertise and tools developed and advanced mainly under ESA activities by CGI Estonia:
- Estonian IIS: Interactive Hosted EO Processing
- EOEP5 Block 4 Open Call: GPU-accelerated SAR Tools
- GSTP: GPU-accelerated EO processing tools development
- TDE: Bulk Processing via Parallel Computing
- QA4EO Quality Assurance for Earth Observation 2019-2024

Expert user input to the toolbox development

- A number of expert users involved in various activities:
 - DLR-DFD Geo-Risks and Civil Security department Simon Plank
 - TalTech Marine Systems Intitute Rivo Uiboupin
 - VTT team of machine learning engineers in the forestry domain Lauri Seitsonen
 - University of Leicester AI4EO activity Prof. Kevin Tansey

esa

- KappaZeta Ltd an EO SME from Estonia Mihkel Veske, Indrek Sünter
- EC Joint Research Centre Guido Lemoine
- ESA-ESRIN Cristiano Lopes, Nicolas Longepe, Andreas Vollrath, Jose Manuel Delgado Blasco

Joint Research Centre

 $\langle \mathbf{X} \mathbf{P} \mathbf{P} \mathbf{N} \rangle$

Toolbox functionality: GPU-enabled "routines"

- Based on the most common requests by the expert users shown on the previous slide
- SNAP Toolbox used as the reference implementation
- Sentinel-1 coherence estimation routine generate a Sentinel-1 coherence pair from two SLC scenes.
- Sentinel-1 calibration routine calibrate and geocode a Sentinel-1 SLC or GRD image.
- Sentinel-1 coherence timeline generation routine generate a coherence time-series from Sentinel-1 SLC images.
- Resampling routine resample multiple images in an input selection to one pixel resolution.
- SAR focussing routines ALOS PALSAR, ENVISAR ASAR and ERS SAR focussing tools.

Sentinel-1 Coherence Routines: alus-coh; alus-coht

9

Coherence estimation routine: Accuracy assessment

Pixel value comparison vs SNAP

Pixel value	Average	Max
Minimum	5.67E-07	3.14E-06
Maximum	1.72E-06	1.11E-05
Mean	0.00018	0.00108
Average relative (PPM)	923.36	1519.59
Coastal pixels mismatch (PPM)	45.93	448.20

Sentinel-1 Calibration Routine

S1 Calibration Routine: Accuracy Assessment

Pixel value comparison vs SNAP

Pixel value	Average	Max
Minimum	0	0
Maximum	2.03E-05	0.0001
Mean	9.87E-09	2.83E-08
Average relative (PPM)	8.99	28.83
Coastal pixels mismatch (PPM)	0.23	0.74

Toolbox general functionality

- GPU-enabled routines (NVIDIA CUDA)
 - Smart use of hardware based on availability
- Inputs supported on multiple levels:
 - Full S1 scene (three subswaths)
 - One S1 subswath
 - One or multiple S1 bursts
 - User-defined input AoI (SHP or WKT)
- SRTM3 and Copernicus DEM 30 supported

Software approach

- Emphasis is on pure processing Command Line Interface. Auxiliary files, analysis etc must be done by external tools
- Can be easily integrated into existing processing environments
 - NVIDIA GPU-s supported (CUDA)
- Official releases built for Ubuntu 20.04 (and its flavors)
 - Docker images available
 - cgialus/alus-focal-jupyter
 - cgialus/alus-devel
 - cgialus/alus-runtime

alus-coh -r <reference>.SAFE -s <secondary>.SAFE -o <output dir or filename> -p <pol> -a "POLYGON ((...))" -orbit_dir <directory of orbit files POE or RES> --dem <DEM files> © 2023 CGI Inc.

SAR focussing routines (1): BULPP

Bulk EO data processing platform by

CGI

- ESA TDE activity "BULPP Bulk Processing via Parallel Computing"
- A prototype processor for ALOS PALSAR Zero-Doppler Focussing
 - Consulted and validated by sarmap SA
- Nearly interactive performance achieved huge potential to develop into a serious on-thefly processor
- Supported modes:
 - Fine Beam Polarimetric
 - Fine Beam Dual Polarization

SAR focussing: processing performance

Initialization, file loading, metadata parsing

Calculations on GPU

 $GPU \rightarrow CPU \rightarrow TIFF$ file writing

SAR focussing routines (2): ENVISAT ASAR and ERS focussing

- As part of the ESA "QA4EO Quality Assurance for Earth Observation" service led by Telespazio VEGA UK
 - ESRIN are looking into renewing their On-The-Fly processors for heritage data
- This includes ENVISAT ASAR and ERS-1 SAR Level-0 processors (our scope)
- Interactive processors potentially a game-changer for accessing heritage data and performing reprocessing campaigns
 - Sub-second level
 - First results very promising
- Full OTF coverage (ENVISAT+ERS) expected Q1/2024
- Open-source!

Use case: C-SCALE/EO4UA

- Copernicus eoSC AnaLytics Engine (C-SCALE) a H2020 activity with the aim to federate European EO infrastructure services, such as the Copernicus DIAS and others
- ALUs is the basis for a C-SCALE use case named **SAROnTheFly**
 - Part of the EO4UA initiative
 - Production of ARD over Ukraine
 - Monitor agricultural activity
 - Year-long coherence time-series
 - Deployment in a cloud environment
 - Investigation of data transfer latencies
 - CREODIAS CARD S1 chains as benchmark
 - Coherence: 11 seconds per subswath

RGB composite of three S1 coherence products produced by ALUs around Mykolaiv, UA (c) European Commission, Joint Research Centre. Contains modified Copernicus Sentinel information₈2022

Opportunity enabled: End-to-end processing from Level-0 -> New approach to data storage and dissemination

Since higher-level products can be generated in (**milli)seconds**, "on-the-fly" processing could be justified directly from raw data instead of storing intermediate products

Due to very fast computations, smart cache mechanism could generate and preserve files based on: • Most requested products

Acquisitions proximity (time and/or space) L3/L4

Benefits: storage costs reduction, faster time to products, less overhead in processing **No need for reprocessing campaigns. Products are always created by the latest processor!**

Conventional Proposed

Thank You!

Martin Jüssi martin.jussi@cgi.com

https://github.com/cgi-estonia-space/ALUs

© 2023 CGI Inc.

(c) European Commission, Joint Research Centre. Contains modified Copernicus Sentinel information 2022

GPU-Accelerated CGI EO processing toolbox by

