Ground Displacement Mapping with L-band Persistent Scatterer Interferometry

Urs Wegmüller, Christophe Magnard, Tazio Strozzi Rafael Caduff, and Nina Jones

> Gamma Remote Sensing AG www.gamma-rs.ch

Contents

- Data used
- Methods
- Results
- Conclusions and outlook

L-band Data over the Swiss Alps

Senser / Mode	Period	Availability
JERS	1992-1998	some scenes
PALSAR-1 Stripmap	2006-2011	small stacks (asc) incl. long baselines (> 2km)
PALSAR-1 ScanSAR	2006-2011	not synchronized
PALSAR-2 Stripmap	2014-ongoing	stacks for some areas (asc) short baselines (< 1km)
PALSAR-2 ScanSAR	2014-ongoing	complete coverage synchronized (from 2015) small stacks (desc. > 10, asc. <10)

ALOS-2 PALSAR-2 ScanSAR coverage over Switzerland (ascending: blue, descending red).

PALSAR-2 ScanSAR Approaches

Merging in map geometry

Co-registration and interferogram generation per sub-swath

Geocoding of differential interferogram

Combination of geocoded sub-swath differential interferograms Merging sub-swath SLCs

Resampling of sub-swath SLCs to a common grid.

Co-registration of the "burst SLCs"

Generation of "mosaic SLCs"

Interferogram generation and geocoding

Time-series analysis characteristics

- 1) Using single pixel phases.
- 2) Using single reference or multi-reference stacks (depending on number of scenes).
- Suited candidates are selected based on the spectral coherence (→ point-like scatterers are preferred).
- 4) Linear trends (in slant range / azimuth geometry) are removed.
- 5) Winter data (snow) are not used.
- 6) In the case of short baselines and accurate DEM heights, one-dimensional regressions can be used.
- 7) GAMMA IPTA Software is used.

Persistent Scatterer Methodology

- 1) Point target candidate identification (using spectral coherence to identify point-like scatterers).
- 2) Get interpretable interferometric phases (regression analysis to unwrap phases, average displacement rates, and residual phases).
- 3) Estimate atmospheric phase delays based on residual phases.
- 4) Iteration, quality control.

The displacement rate accuracy depends mainly on the total time period covered and the quality thresholds (phase standard deviation threshold) applied.

Capacity and efficiency considerations

- 1) ~ 20 GByte per SLC (for about 80% of full scene)
- 2) Using vector data format with point candidate lists reduces this to 80 MByte (for 10 million candidates)
- 3) Regression analysis, unwrapping, checking of unwrapping of residual phase, atmospheric path delay estimation are all quite robust and efficient for this L-band data.
- 4) \rightarrow Data volume and processing time not a problem.

Robustness considerations

- 1) Working initially with "high quality candidates" helps in the efficient development of the solution.
- 2) Short baselines and accurate DEM heights facilitate the processing → residual topographic phases are small → (initially) one dimensional regressions can be used.
- 3) At L-band the residual atmospheric phases are $<<\pi$.
- 4) Unwrapping simpler and more reliable than at C-band.

Quality considerations

- Lower phase to displacement sensitivity → a given phase error results at L-band in a higher displacement error than at C-band.
- 2) Atmospheric error (in distance) is independent of wavelength.
- 3) Using more stringent quality thresholds permits achieving similar accuracies as at C-band.
- 4) Using similar quality thresholds results in somewhat lower accuracies (e.g., 2mm/year), while permitting to include faster movements and achieve a better coverage in vegetated areas.

Overview processing Overview result from desc. PALSAR-2 ScanSAR data

Extracted section for Grindelwald

- 2

L 0 1 LOS displacement rate [cm/year]

-2

look direction

Overview processing Overview result from desc. PALSAR-2 ScanSAR data

GAMMA REMOTE SENSING

PALSAR-2 local processing for Naturns

- 2

Sentinel-1 result (EGMS) for Naturns

Gaps for vegetation Gaps for faster movements

GAMMA REMOTE SENSING Mattertal VS

LOS displacement rate [cm/year]

Conclusions

- Compared to C-band, L-band PSI shows a better potential
 - for faster and non-uniform motion
 - for vegetated areas.
- Using a small stack (< 15 L-band scenes over > 4 years) a very useful displacement map over the Swiss alps could be generated.
- PSI was found to be overall more straight-forward at Lband. Phase error terms are small compared to a phase cycle, which facilitates filtering and unwrapping. In addition, coherence over vegetated areas is higher.

Outlook

- PALSAR-3: same orbit as PALSAR-2
 → time series can be continued
 Questions: data access ?
- NISAR: frequent global coverage, 12-day repeat, free and open data

 → very high potential
 Questions: 3 years mission (consumables 5 years)
- ROSE-L: launch 2028
- Other L-band sensors:
 - SAOCOM (2 L-band sensors in orbit)
 - LuTan-1 (2 L-band sensors in orbit)

)GAMMA REMOTE SENSING

GAMMA REMOTE SENSING

SAOCOM DInSAR 20211118_20211220

LT1a/LT1b Stripmap DInSAR

LT1 DInSAR (dt=4days, Bperp=650m, 17.3.2023-21.3.2023), The line-of-sight velocity of the landslide is > 1 cm per day.

